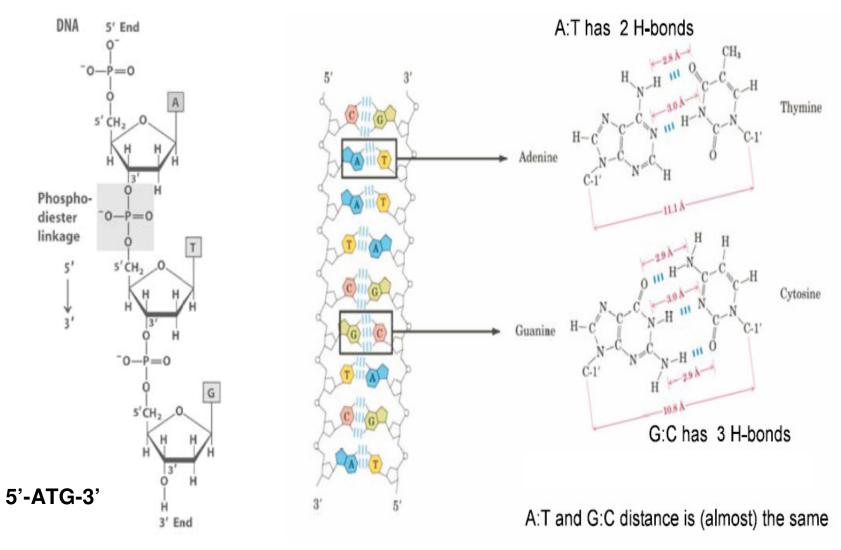
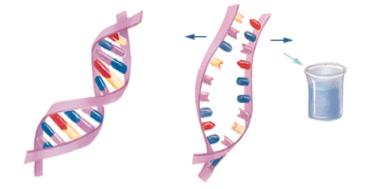

DNA Hybridization Detection

- Electrochemiluminescence based DNA biosensor - DNA microarray

Minjeong So Chem 395


Outline

- Basic DNA and Hybridization
- Electrochemiluminescence(ECL) based DNA biosensor
 - DNA hybridization detection at high amplification with Ru(bpy)₃²⁺ (*Anal.Chem, 2004, 76, 5379*)
- DNA Microarray

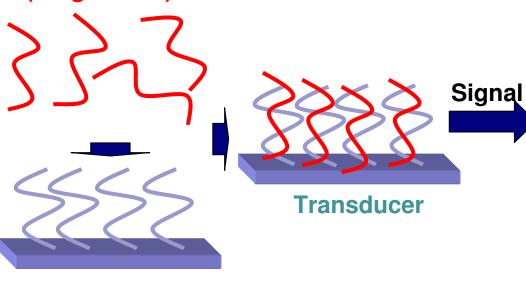

DNA Hybridization

- Diagnostic test for mutations
- Monitoring gene expression (sequence)
- Screening for targets known to play a role in disease
- Assessment of medical treatment
- Environmental investigations
- Biological warfare agent detection

Basic DNA

How Genetic Sequencing Works in DNA biosensor

Separate ds-DNA (Probe DNA).


DNA is denatured by heat or chemical denaturant and placed in solution or on a solid substrate, forming a reference segment

Introduce unknown ss-DNA (Target DNA) Unknown DNA sample is introduced to the reference segment. The complement of the reference segment will hybridize to it.

How Hybridization is Identified

Analyte (Target DNA)

Electrochemical devices

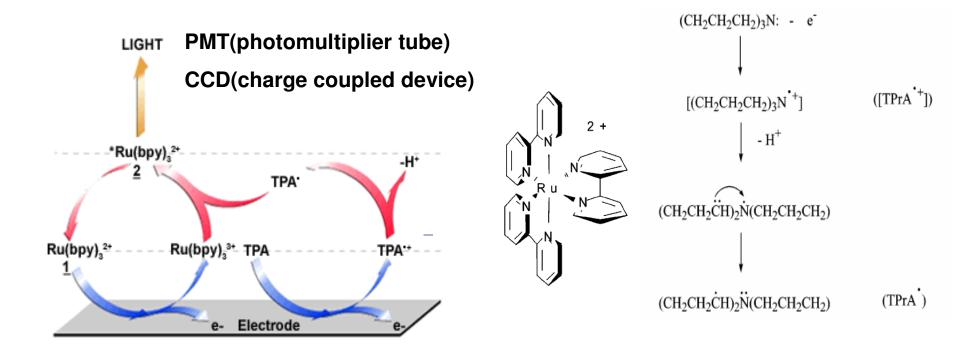
Current signal of a redox indicator

Optical devices

Emission signal of fluorescent or chemiluminescent lables Surface optical properties Nanoparticle based colorimetric detection

Recognition layer (Probe DNA)

Mass-sensitive devices

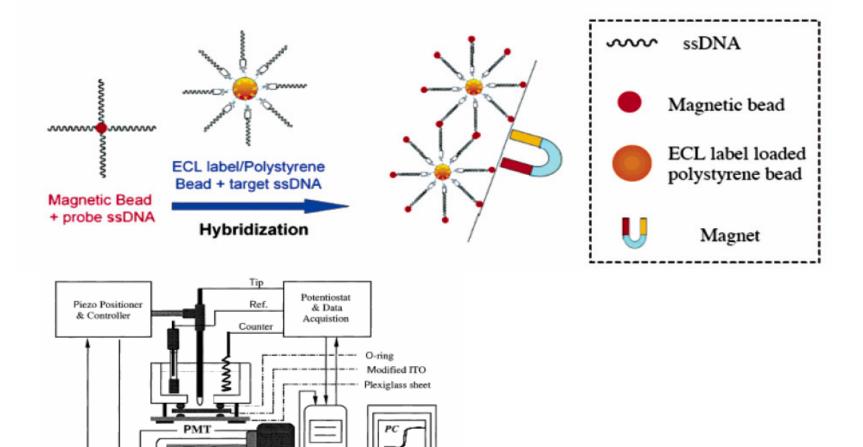

Frequency signal of oscillating crystal with DNA probe

DNA Hybridizaion biosensor

- Immobilization of ss-DNA probe onto the transducer surface
- Tranducing (association of an appropriate hybridization indicator)

Joseph Wang, Nucleic Acids Research, 2000, 28(16), 3011

Electrochemiluminescence Process



Proposed mechanism for Ru(bpy)₃²⁺ /TPrA ECL system Proposed tri-n-propylamine oxidation sequence

Ru(bpy)₃²⁺ /TPrA ECL system forms the basis of commercial system for immunoassay and DNA analysis.

http://www.bioveris.com/technology.htm, Richter, Chem. Rev.; 2004; 104(6); 3003-3036

DNA hybridization detection at high amplification with Ru(bpy)₃²⁺

Miao, W.; Bard, A. J Anal. Chem. ; 2004; 76(18); 5379-5386.

B 0

DNA hybridization detection at high amplification with Ru(bpy)₃²⁺ (continued)

1. Probe DNA-MB conjugate

- **Probe DNA** : 5'-[biotin-TEG]-AACGA TAGCT CCTAC ATTTG GAG-3'

MB: streptavidin-coated superparamagnetic polystyrene beads

2. Target DNA-Ru/PSB/Avidin conjugate

1) Target DNA

-complementary, 5'-[biotin-TEG]-CTCCA AATGT AGGAG CTATC GTT-3' (t-ssDNA)

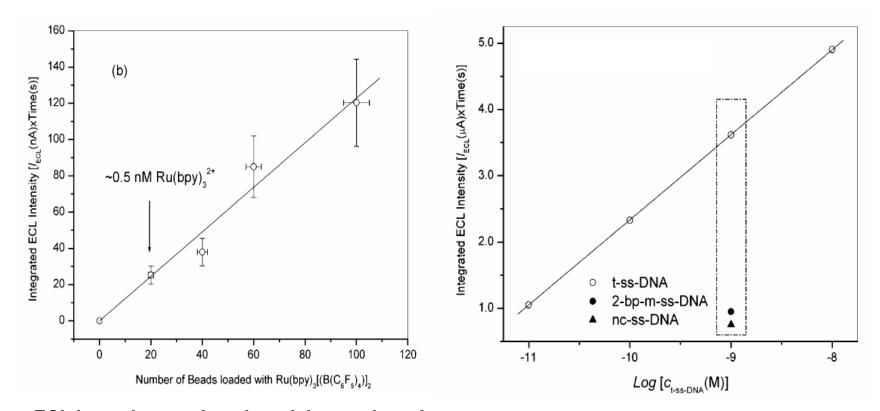
- noncomplementary, 5'-[biotin-TEG]-TTAAC ACCTT AGCGA CGGCT AGT-3' (nc-ssDNA)

- two base pair mismatched oligomer sequence,

5'-[biotin-TEG]-CTCCA AACGT AGGAG TTATC GTT-3' (2-bp-m-ssDNA)

2) ECL Label

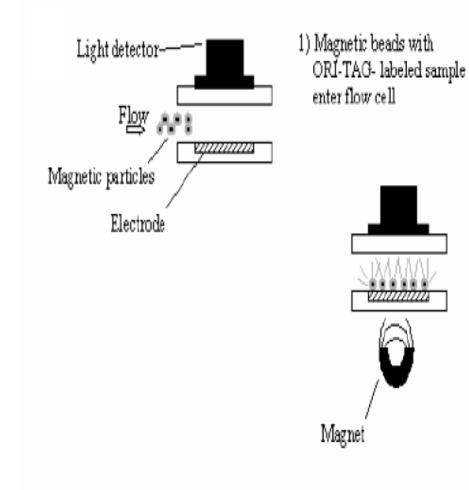
: Tris(2,2'-bipyridyl)ruthenium(II) tetrakis(pentafluorophenyl)borate (Ru(bpy)₃[B(C₆F₅)₄]₂)


3) PSB :Carboxylate polystyrene microspheres

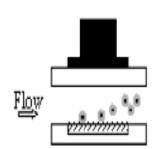
4) Immobilization Avidine on the surface Ru/PSB

3. DNA Hybridization

- in the hybridization buffer
- Probe DNA conguage –Target DNA conguate aggregates were magnetically separated from the mixture containing free unbound Targe DNA conguate


DNA hybridization detection at high amplification with Ru(bpy)₃²⁺ (continued)

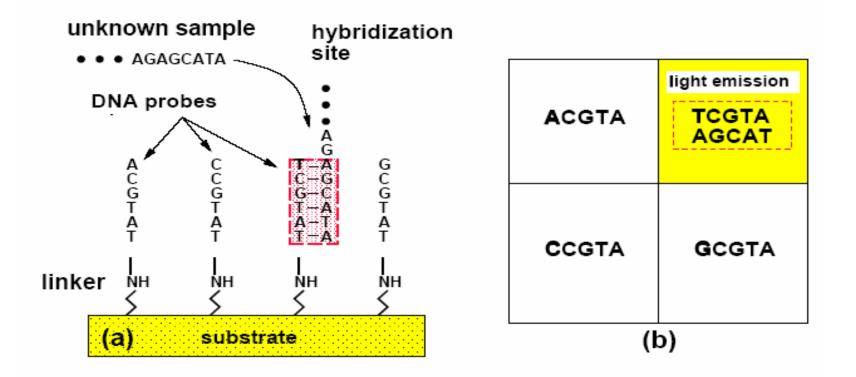
ECL intensity as a function of the number of 10- m diameter polystyrene beads loaded with $Ru(bpy)_3[B(C_6F_5)_4]_2$. The experiments were carried out in 0.50 mL of 0.10 M TPrA-0.055 M TFAA-0.10 (TBA)BF₄ MeCN-1% H₂O at a 2.2-mm diameter Pt electrode by applying CV potential sweeps between 0 and 3.0 V vs Ag/Ag+ at a scan rate of 50 mV/s.


ECL detection of DNA hybridization between probe DNA-MB and target DNA-Ru(II) PSB/avidin

Magnetic bead/flow cell ECL process (BioVeris Corp.)

ORI-TAG refers to ECL labels

 Magnet captures beads on electrode. Magnet is removed, electrode excites ORI-TAG, detector measures light


 Beads leave flow cell, electrode and cell reconditioned for next measurement

Richter, Chem. Rev.; 2004; 104(6); 3003-3036

High density DNA Microarray

- DNA microarrays, Oligonucleotide arrays, GeneChip arrays, DNA chips are all similar terms
- Revolution in the analysis of genetic information
- Hybridization is a highly parallel search by each molecule for matching partner on an affinity matrix.
- Specificity and affinity of complementary base pairing.
- Use of glass as a substrate, fluorescence for detection and the development of new technologies for synthesizing or depositing DNA have allowed the miniaturization of DNA arrays with increases in information content.

Simple Example of DNA Microarrays

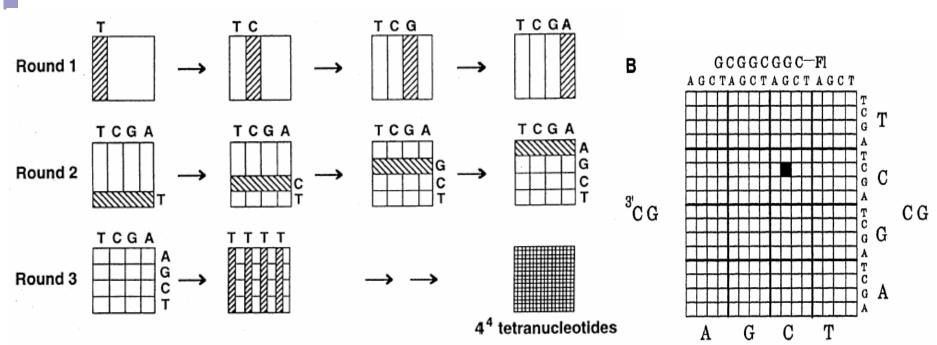

- (a) Example immobilized DNA probes showing hybridization of unknown(target) to specific probe.
- (b) Probes are arranged a planar arrays. The hybridized regions can be detected by the fluorescence of the duplex.

C Mastrangelo , Adv. Sci. Technol, 1999

DNA Microarray Fabrication

- Robotic pin spotted microarray
- In situ microarray(Photolithographic method)
- Inkjet printing microarray
- Polymer photodeposition of microarray probe positions
- High density fiber optic microsphere-based microarray

Affymetrix GeneChip array by photolithographic technology



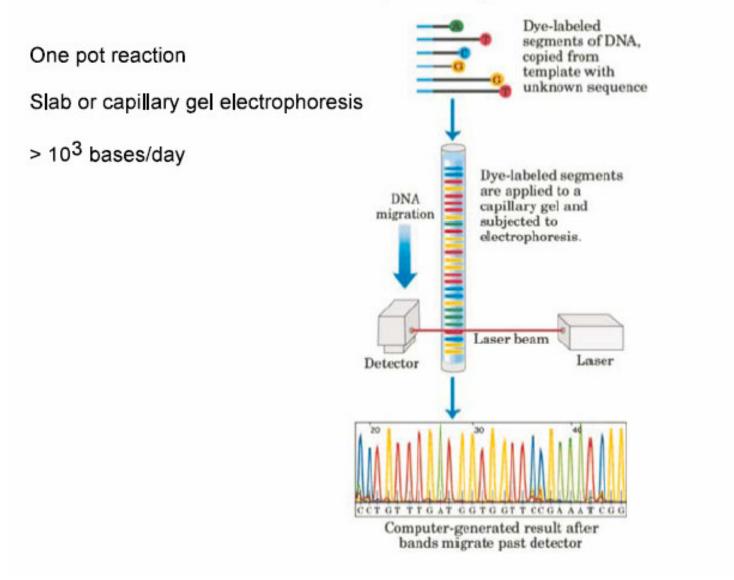
Light-directed synthesis of oligonucleotides

- A surface bearing photoprotected hydroxyls groups is illuminated through a photolithographic mask, generating free hydroxyl groups in the photodeprotected regions.

- The hydroxyl group are then coupled to a deoxynucloside phosphoramidite.
- A new mask pattern is applied, and a second photoprotected phosphoramidite is coupled.
- Rounds of illumination and coupling are repeated until the desired set of products is obtained.

http://www.affymetrix.com

Combinatorial synthesis of 4⁴ tetranuclotides.


-In Round 1, one fourth of the synthesis area is activated by illumination through mask1 for coupling of the first nucleoside.

-In cycle 2 of round 1, mask 2 activates a different one-quarter section of the synthesis area and a different nucleoside is coupled.

-Further lithographic subdivisions of the array and chemical couplings generate the complete set of 256 tetranucleotides.

Hybridization of the target DNA : 5'-GCGGCGGC- fluorescein to this array Complementary probe: 3'-CGCCGCCG (2698 counts) Mismitches probes : 3'-CGCAGCCG(554 counts); 3'-CGCCGACG(317 counts)

Automated Sequencing: Fluorescent ddNTPs

Conclusion and Future(DNA Microarray)

- Data can generated in a high throughput, parallel fashion.
- Systematic examination and classification of biological processes
- DNA microarray can detect primary DNA sequences, gene expression and physiological responses.
- From specific single-base mismatch identification to global expression analysis
- The trend toward miniature probe
 - high throughput design generating more information simultaneously
 - low volume sampling and faster target diffusion rates
 - full genomic screening and analysis capabilities in a single assay