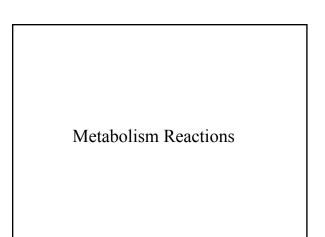
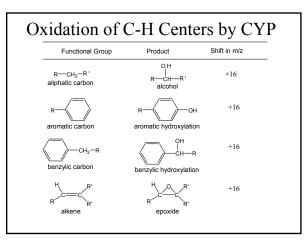
Metabolite Identification and Characterization

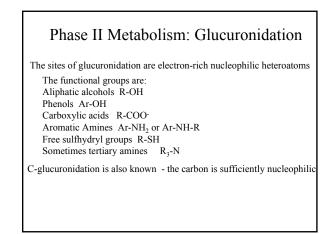

Chandra Prakash, Ph. D. Biogenidec, Cambridge, MA

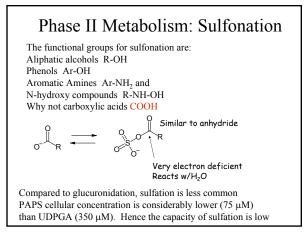
Outlines

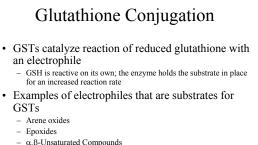
- Background
- Metabolism Reactions
- · LC-MS strategies for metabolite identification
 - Triple Stage Quadrupole (TSQ) LC/MS/MS
 - 3 dimensional and linear ion traps various hybrids: Q-TOF, Triple TOF, trap-orbitrap
 - various nybrids: Q-TOF, Triple TOF, trap-orbit
- Analytical techniques combined with mass spectrometry for characterization of metabolites
 - Derivatization
 - H/D exchange
 - LC-NMR
- Future Trend

Why Identify Metabolites?


- Most of the drugs are eliminated from the body by metabolism: Detoxification process-This is good.
 The metabolites modulate the efficacy of drugs in the treatment of
- The metabolites modulate the efficacy of drugs in the treatment of disease.
- The metabolites may possess pharmacological activity.
 The metabolites may be toxic: Bioactivation- bad.
- The metabolites may be toxic. Bloactivation- bad.
 The metabolites can be involved in drug-drug interactions
- For proper safety assessment of a drug for human use, it must be shown that the animal species used for safety evaluation are exposed to the same metabolites as humans
- Identify metabolic liabilities
- synthesize compounds that are more metabolically stable
 Pharmaceutical industries are mandated by regulatory agencies to identify metabolites of NCE.


Xenobiotic Metabolism


- Phase I (Activation/Detoxification)
 - Polar reactive groups introduced
 - products most often more polar and less lipophilic
 - more water soluble
- Phase II (Detoxification)
 - Covalent "conjugation" to endogenous substances
 - $-\,$ reactions most often abolish biological activity and add
 - to polarity



Functional Group	Product	Shift in m/z	
R──X──CH ₂ ─R = N, O, S, halogen	R-XH+ HC-R' dealkylated product	-R+H	
R──X──R' X = NR", S	R—X—R' N or S oxide	+16	
R—NO ₂ nitro group	RNH O H hydroxylamine	-14	
RNH O H hydroxylamine	RNH ₂ amine	-14	
R ₃ N → O N-oxide	R ₃ N amine	-16	

- $-\alpha,\beta$ -Unsaturated Compounds
- Alkyl halides
- Nitroaromatics
- Quinones, quinoneimines, and quinonemethides

Tools for Metabolite Identification

Tools

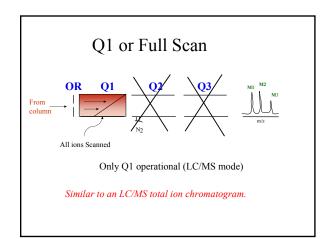
- LC-MS/MS is extensively and routinely used for metabolite identification
 - Sensitive, selective and quick
- Structural confirmation frequently requires additional tools such as
 - NMR
 - synthesis of authentic standards
 - the lost art of chemical derivatization

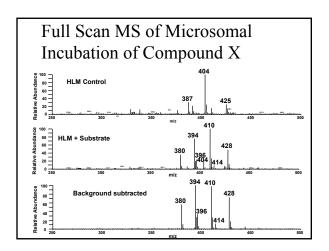
MASS SPECTRUM

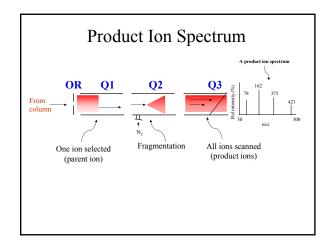
- Mass Spectrometers Do Not Measure Mass. It is plot of the mass-to-charge ratios (m/z) vs. the % relative intensities of the ions, where base peak is the most abundant ion in the spectrum
- If single charge, z=1 and m/z = m
- Three types of ions in a mass spectrum;
 - Intact molecule± one or more charges \Rightarrow Molecular mass
 - Fragment ions \Rightarrow Structure information
 - Background ions \Rightarrow from non-analyte species

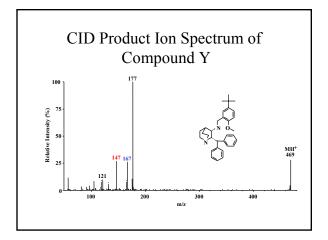
Natural Isotopic Abundance of Common Elements

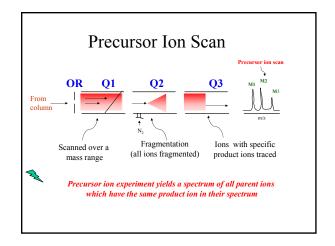
Element	Isotope Mass	%
Carbon	¹² C ¹³ C	98.9 1.1
Hydrogen	¹ H ² H	99.98 0.02
Oxygen	¹⁶ O ¹⁸ O	99.8 0.2
Nitrogen	¹⁴ N ¹⁵ N	99.6 0.4
Chlorine	³⁵ Cl ³⁷ Cl	75.8 24.2
Sulfur	³² S ³³ S ³⁴ S	95.3 0.76 4.20

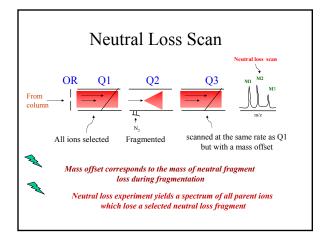

Mass			
Element	Nominal Mass	Average Mass	Exact Mass
С	12	12.011	12.0000
Н	1	1.00797	1.0078
0	16	15.9994	15.9949
Ν	14	14.003	14.0031
Cl	35	35.45	34.9689
S	32	32.06	31.972

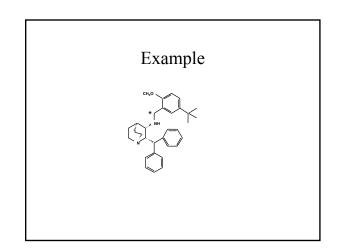

Average vs. Exact Mass

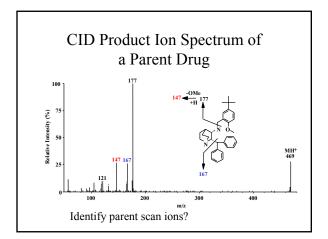

- Average mass results from occurrence of isotopes.
 - This is what we weigh
- Exact mass results from non-integer masses of sub-atomic particles.
 - This is what the Mass Spec sees
 - Deviation of exact from nominal is the "Mass Defect"

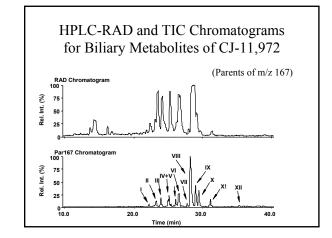

Exampl	es (C,H,	O,N compo	ounds)
<u>Compound</u>	Integer	<u>Avg. Mass</u> <u>H</u>	Exact Mass
Caffeine C8H10N4O2	194	194.1785	194.0802
Xanomeline C14H23N3OS	281	281.4057	281.1556
Ziprasidone C21H21N4OSCI	412	412.9197	412.1120

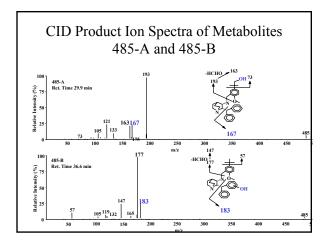

Г

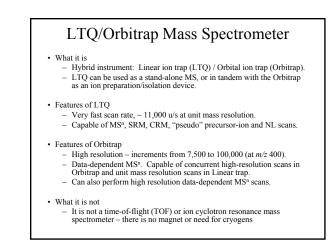


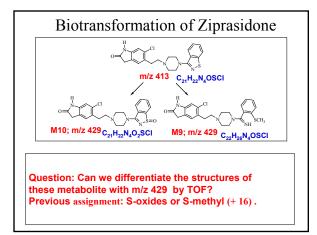


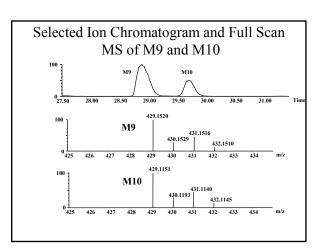


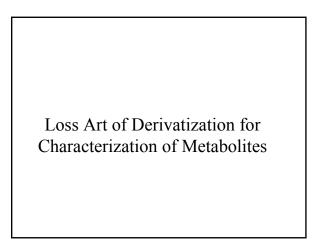


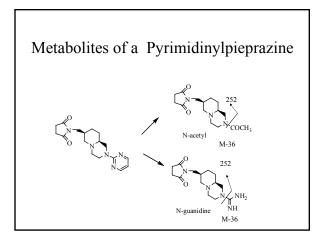


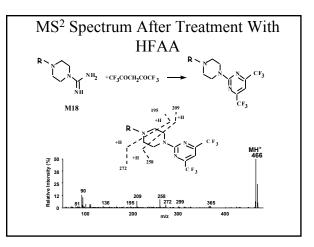


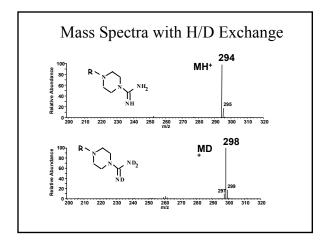


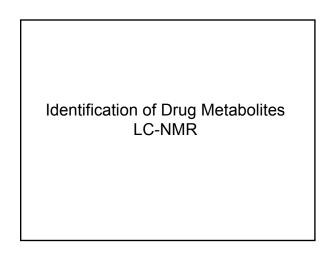


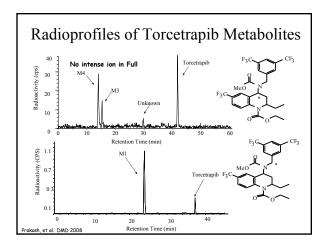


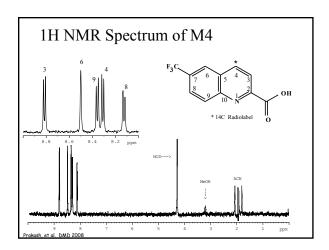


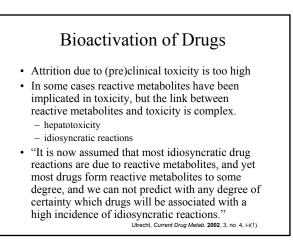




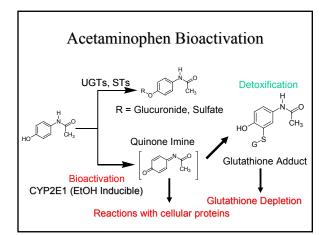

Metab	Cal. Mass	Obs. Mass	+/-mDa	+/-ppm	Mol. Formula
M9	429.1516	429.1520	0.4	0.9	C22H26N4OSCI
M10	429.1152	429.1151	-0.1	-0.3	C21H22N4O2SCl
Parent	413.1203	413.1205	0.2	0.4	C21H22N4OSCl

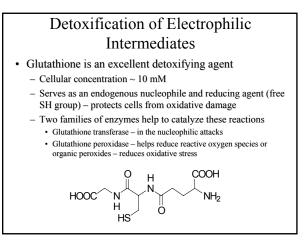


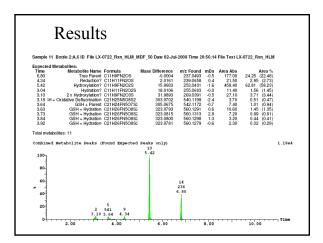

ADVANTAGES

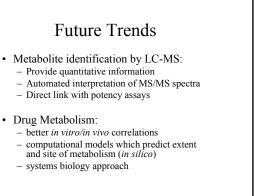

- LC-NMR (Continuous flow or stopped flow)
- Fast
- Reportedly sensitive (50 200 ng)
- Amenable to automation
- Negate the need for isolation
- Sample Stability
- Cleaner Spectra

Disadvantages and Limitation of LC-NMR

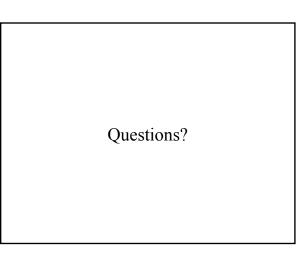

- Sensitivity - Nearly eliminates quantitative application
- The Chromatograph
- · Solvent Suppression
- Expensive deuterated mobile phase and buffers
- Shimming problems introduced by LCgradient methods







Bioactivation/Adverse Drug Reactions



SOME REFERENCES

- Biochemistry of Reactions by Bernard Testa
- Biotransformation of Xenobiotics Andrew Parkinson in Casarett and Doull's Toxicology, 5th edition.
- Drug Biotransformations Neal Castagnoli in Burgers Medicinal Chemistry 4th edition.
- Drug Metabolism -Bernard Testa- in Burgers Medicinal Chemistry, 5th edition.
- Strategies for Identifying Metabolites Prakash, Shaffer and Nedderman. Mass Spectrometry Reviews 2007.
- HPLC/API/MS/MS in Drug Metabolism and Toxicology Studies- Kamel and Prakash Curr. Drug Metab. 2006

