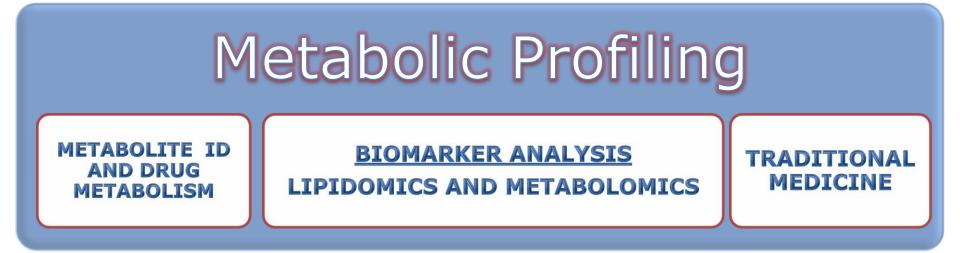
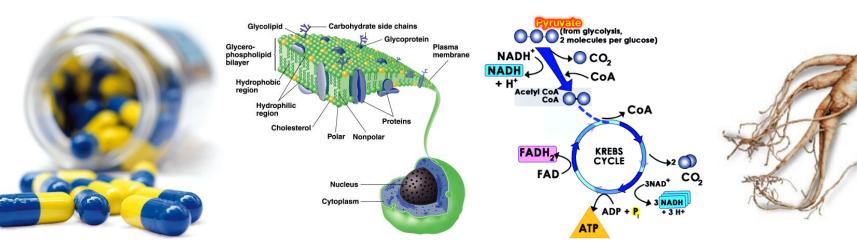


Chemically Intelligent Metabolite ID Workflows


Dave Heywood MS Field Marketing

©2010 Waters Corporation | COMPANY CONFIDENTIAL


- Metabolite Profiling or Metabolite ID?
- Mass Spectrometry and Accurate Mass Measurements
- Metabolite ID Workflow
 - Comprehensive data collection
 - Intelligent data interpretation
 - Tools for interpreting structure and elemental composition
 - Qual/Quan, integrating quantitative measurements
- Gratuitous commercial type slides

What's Metabolic Profiling a

Waters

Analytical Challenges in Metabolic Profiling

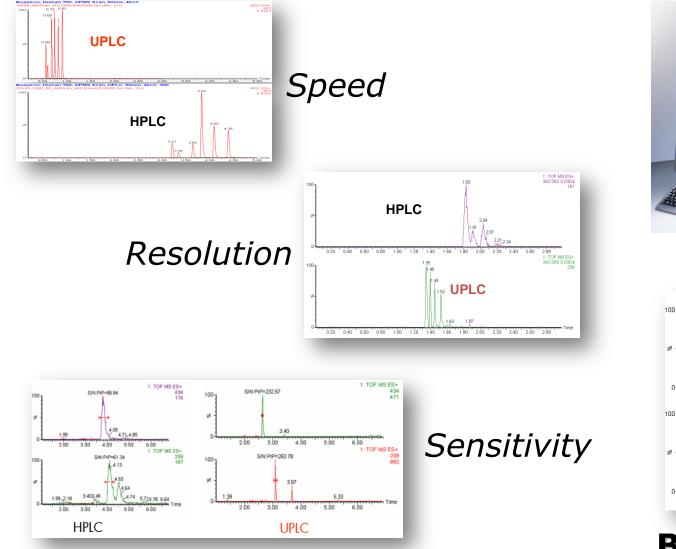
Extracting the maximum amount of information

- Complex mixtures with wide dynamic range
- Full structural characterization

Providing wide range of experimental options

New ways of extracting more information

Increase productivity


- Provide consistently high performance for users of all experience levels
- Provide ability to expand analytical possibilities in the future

Acquity UPLC The Gold Standard in Liquid Chromatography

Better MS Data

100 200 300 400 500 600 700 800 900

563.57

258.19

258.19

259.19

295.10

305.16

239.11

113.97

79.02

©2010 Waters Corporation 5

1: TOF MS ES+

1: TOF MS ES+

855

HPLC

UPLC

Waters THE SCIENCE OF WHAT'S POSSIBLE."

Tandem Quadrupole

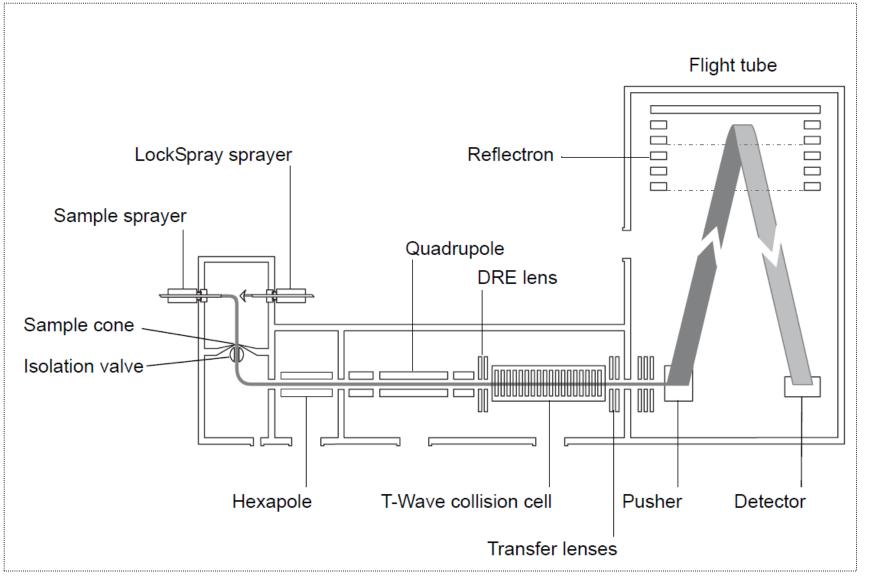
- Highest Sensitivity for targeted analysis
- Accurate quantitative data
- True class specific screening
- Affordable rugged mass spectrometry technology

TQ Schematic

Waters

Orthogonal Acceleration Time-Of-Flight

Xevo G2 QTof



SYNAPT G2

- High resolution mass spectra
 - Resolution independent of scan speed
 - MS and MS/MS
- High mass measurement accuracy (Accurate Mass)
 MS and MS/MS
- High sensitivity full scan data
- MS^E
 - Structural analysis for metabolite localization
- Ideal for qualitative and more recently combined qualitative and quantitative workflows

Waters

1

©2010 Waters Corporation 9

What is Accurate Mass?

The Fundamentals of Accurate Mass

Waters

- carbon has a mass of 12
- hydrogen has a mass of 1
- oxygen has a mass of 16
- nitrogen has a mass of 14

But this is not strictly "Accurate"

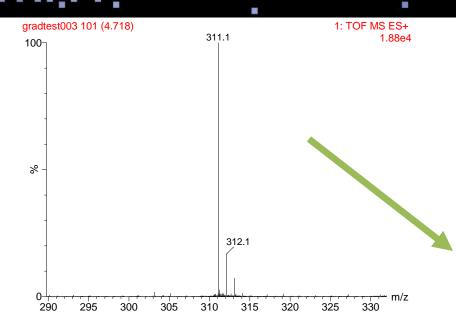
The Fundamentals of Exact Mass

- carbon has a mass of 12.0000
- hydrogen has a mass of 1.0078
- oxygen has a mass of 15.9949
- nitrogen has a mass of 14.0031
- It is possible to have combinations of atoms which have the same nominal (or integer) mass but different accurate mass
- If such compounds can be mass measured with sufficient accuracy it is possible to determine elemental composition

Simple Examples

Waters

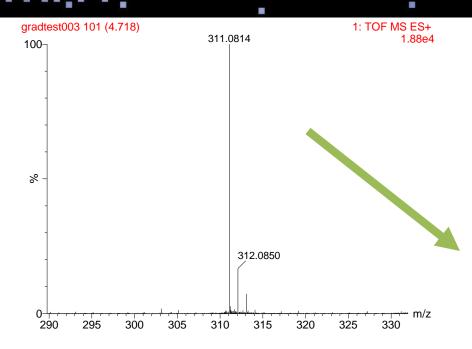
- CO = 27.9949
- $N_2 = 28.0061$
- C_2H_4 = 28.0313
- These elemental combinations have the same nominal mass but different accurate masses
- A nominal mass measurement cannot distinguish these
- If any compounds differ in their elemental compositions by substitution of any of these elements, then the exact mass measurement will show this



- The accuracy of the measurement is quoted as the difference (error) between the measured mass and the calculated mass
- The accuracy is measured in
 - milliDaltons (1mDa = 0.001 mass units)
 - ppm = parts per million = $\Delta m/m \times 10^6$

True' mass	= 400.0000	
Measured mass	= 400.0020	
Difference	= 0.0020 (2 mDa)	
ppm error =	$\frac{0.002}{400} \times 10^6 = 5 \text{ ppr}$	n

When Exact Mass Makes a Difference (assuming elements $C_{50}H_{100}N_5O_5S_2$)


Nominal mass measured spectrum (ie quadrupole or ion trap data)

~50ppm tolerance @ m/z 311.0814

37 possible results

😵 Element	al Compositi	on												×
<u>File E</u> dit <u>V</u> i	iew <u>P</u> rocess I	<u>H</u> elp												
- 482 4 M - 20 X														
Single N	lass Analy	sis												
Toleranc	e = 50.0 PF	PM / E	DBE: n	nin = ·	-1.5, ma	ax = 5	0.0							
Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%														
Monoisot	opic Mass, (Odd and	Even	Electro	on lons									
	ula(e) evalua					nits (ı	ıp to 50 cl	osest re	sults	for ea	ich п	nass)	
Mass	Calc. Mass	mDa	PPM	DBE	Formula			Score	С	н	N	0	S	~
311.0814	311.0814	0.0	0.0	7.5	C12 H15	N4 0	4 S	5	12	15	4	4	1	
	311.0821	-0.7	-2.1	16.5	C20 H11	N2 0	2	31	20	11	2	2		
	311.0807	0.7	2.2	17.0	C18 H9	N5 O		28	18	9	5	1		
	311.0802	1.2	3.7	11.0	C18 H17	'N S2		27	18	17	1		2	
	311.0827	-1.3	-4.3	7.0	C14 H17	' N O5	S	2	14	17	1	5	1	
	311.0794	2.0	6.5	12.0	C17 H13			23	17	13	1	5		
	311.0841	-2.7	-8.6	12.0	C15 H13			9	15	13	5	1	1	
	311.0780	3.4	10.8	12.5	C15 H11			22	15	11	4	4	-	
	311.0848	-3.4	-10.8	2.5	C9 H19			18	9	19	4	4	2	•
gradtest003	101 (4.718)										1:1	TOF I	IS E	S-
-					311.	0814							1.8	Be
100						1								
-														
1														
%-														
~.														
1						312	.0850							
1	3	01.1563 ₃	02 142	305.1	582		.314.083	。319.17	729	207	4000		407	
	3.1138		03.142	1	, , , , , , , , , , , , , , , , , , ,	بليج أربعها		<u>° /</u>		321	.1992			
290.0	295.0	300.0	30	05.0	310.0		315.0	320.0		325.0		330.		
or Help, pres	s F1					Γ								-
, ricipy pres														_

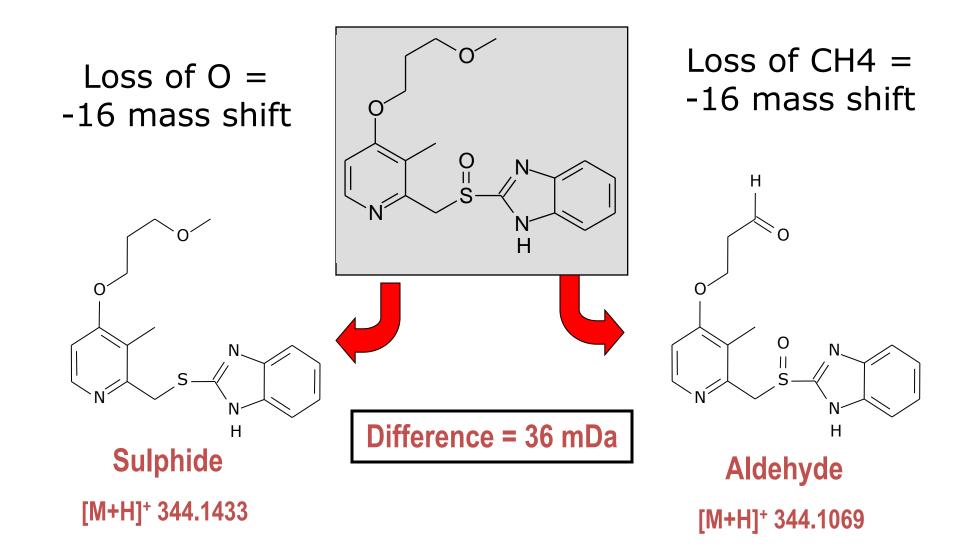
When Exact Mass Makes a Difference (assuming elements C₅₀H₁₀₀N₅O₅S₂)

Exact Mass Measured Spectrum

3ppm tolerance @ m/z 311.0814

3 Possible Results

🔀 Elementa	al Compositio	n										×
Eile Edit View Process Help												
_	Single Mass Analysis											
	e = 3.0 PPN											
						0 Abundance	e = 1.09	%				
	opic Mass, O											
396 Tormu	liale) evalua	iea witi	n J res	uits w	πnin	limits (up to 50	closes	tresu	Its tor	eacr	пта	ssj
Mass	Calc. Mass	mDa	PPM	DBE	Form	ula	Score	С	н	N		s
311.0814	311.0814 311.0807	0.0	0.0 2.2	7.5 17.0		H15 N4 O4 S H9 N5 O	1 2	12 18	15 9	4 5	4	1
	311.0807	-0.7	-2.1	16.5		H11 N2 O2	3	20	11	2	2	
gradtest003	101 (4.718)								1	TOF	MS E 1.88	
ן 100					311.0	0814					1.00	64
%-												
1						312.0850						
293	.1138 301.1	563,30	3 1429	305 15	582		319.17	29	327 19	192		
0-4-1-1-1 290.0	*****	300.0	305		310.0		320.0	325			n r	n/z
For Help, press		500.0	305	.0	510.0	315.0	320.0	325		330	.0	_
r or nepy press												_//,


iters

THE SCIENCE

WHAT'S POSSIBLE."

Exact mass for Selectivity Isobaric metabolites of Rabeprazole

Waters

- Measurement of mass to 4 decimal places
- High confidence in confirming expected compounds
 - Distinguishes them from compounds of similar mass
- Compound identification
 - Prediction of elemental composition
- Patent submission and publication
 - ACS require better than 5ppm mass accuracy for publication

- Magnetic sector mass spectrometers
 - these have traditionally been used for exact mass measurement
 - required skilled operator to get good results
- Orthogonal time-of-flight (oa-TOF) mass spectrometers
 - routine operation with good mass accuracy (<1ppm)
 - Accurate isotope ratio measurements
- Ion Cyclotron Resonance mass spectrometers (FTICR, Orbitrap)
 - generally expensive and more difficult to operate
 - good mass accuracy (<1ppm)</p>

Advanced Elemental Composition Calculations

Elemental Composition Anal

sis	VVOTECS THE SCIENCE OF WHAT'S POSSIBLE.	

Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions

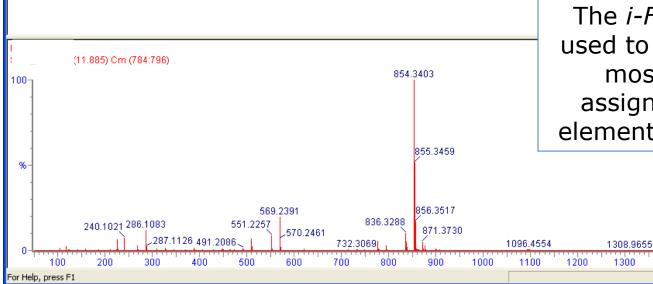
🔀 Elemental Composition File Edit View Process Help

Single Mass Analysis

Element prediction: Off

446 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass)

Elements Used:

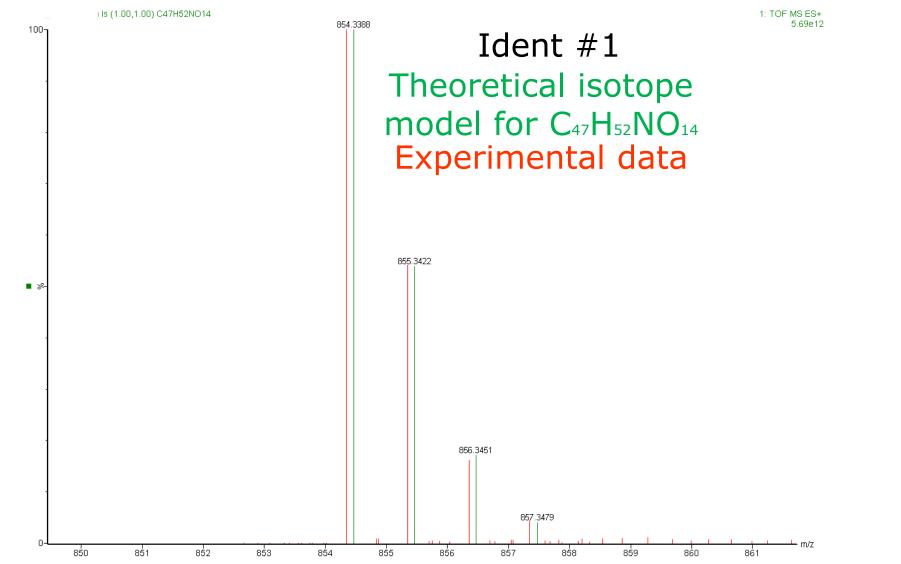

H

C: 0-50 H: 0-200 N: 0-4 0:0-20

🕘 M 🗉 🛛

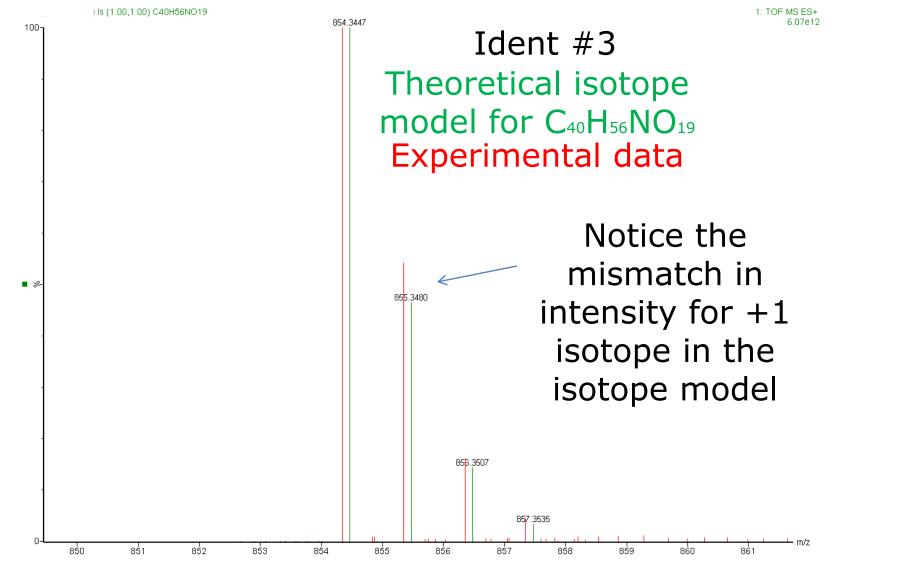
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0

Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	Н	N	0	
854.3403	854.3388	1.5	1.8	22.5	C47 H52 N O14	289.6	0.114	89.26	47	52	1	14	
	854.3348	5.5	6.4	18.5	C42 H52 N3 O16	291.9	2.387	9.19	42	52	3	16	
	854.3447	-4.4	-5.2	13.5	C40 H56 N O19	293.7	4.170	1.54	40	56	1	19	


The *i-FIT* values are used to determine the most confident assignment for the elemental composition

> 1473.6078 🗖 m/z

> > 1500


1400

Waters THE SCIENCE OF WHAT'S POSSIBLE."

©2010 Waters Corporation 22

VVaters THE SCIENCE OF WHAT'S POSSIBLE.

©2010 Waters Corporation 23

Exact Mass Measurement. Elemental Composition – Isotopic Fit

	W		sotope a nformati		ce	2% isotopic abundance accuracy	5% isotopic abundance accuracy
molecular mass [Da]	10 ppm	5 ppm	3 ppm	1 ppm	0.1 ppm	3 ppm	5 ppm
150	2	1	1	1	1	1	1
200	3	2	2	1	1	1	1
300	24	11	7	2	1	1	6
400	78	37	23	7	1	2	13
500	266	115	64	21	2	3	33
600	505	257	155	50	5	4	36
700	1046	538	321	108	10	10	97
800	1964	973	599	200	20	13	111
900	3447	1712	1045	345	32	18	196

BMC Bioinformatics 2006, 7:234 doi:10.1186/1471-2105-7-234

iters

POSSIBLE.

Metabolite ID and Drug Metabolism

©2009 Waters Corporation | COMPANY CONFIDENTIAL

Challenges of R&D in the Pharmaceutical Industry

Waters

Pharmaceutical R&D is a long, costly and risky activity. On average it takes 12 years to develop and market a NME

The price of innovation: new estimates of drug development costs

Joseph A. DiMasi^{a,*}, Ronald W. Hansen^b, Henry G. Grabowski^c

^a Tufts Center for the Study of Drug Development, Tufts University, 192 South Street, Suite 550, Boston, MA 02111, USA

^b William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, NY, USA ^c Department of Economics, Duke University, Durham, NC, USA

Received 17 January 2002; received in revised form 24 May 2002; accepted 28 October 2002

Abstract

The research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per new drug is US\$ 403 million (2000 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 11% yields a total pre-approval cost estimate of US\$ 802 million (2000 dollars). When compared to the results of an earlier study with a similar methodology, total capitalized costs were shown to have increased at an annual rate of 7.4% above general price inflation.

Working with the Pharmaceutical Industry

THE SCIENCE OF WHAT'S POSSIBLE."

For a decade we have partnered with the pharmaceutical industry to bring meaningful impact

"In terms of efficiency for metabolite identification studies, the accurate mass LC/MS^E approach has provided significant gains...

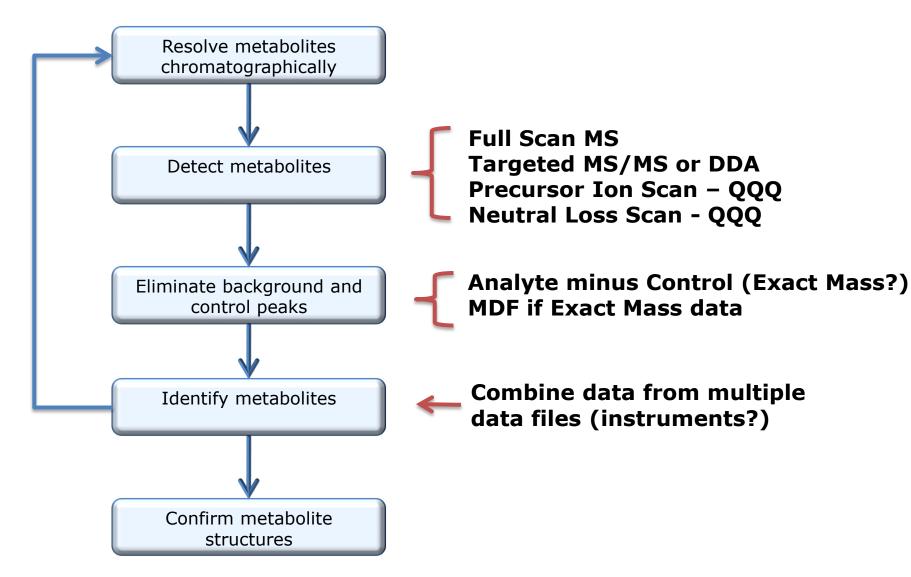
...typical savings using the approach outlined in this paper have been in the range of 13 hours per molecule. As a result the capacity for conducting preliminary metabolite identification experiments has increased by almost an order of magnitude."

P. R. TILLER, et al. Rapid Commun. Mass Spectrom. 2008; 22: 1053–1061 "UPLC with QTof and MetaboLynx XS provides an empowering platform for our metabolism scientists...With this complete workflow, we can routinely see more metabolites in a single run, and present a more definitive metabolic pathway picture for our clients in less time."

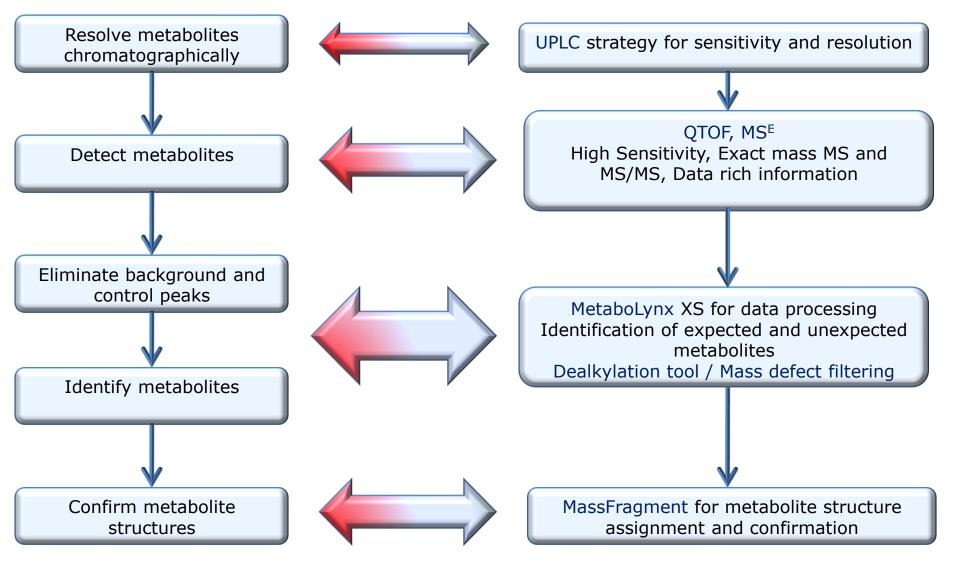
DR. DAVID JOHNSON, DIRECTOR OF DMPK, MICROCONSTANTS

The 9 biggest pharmaceutical companies worldwide^{*} use Waters Metabolite Identification System Solution

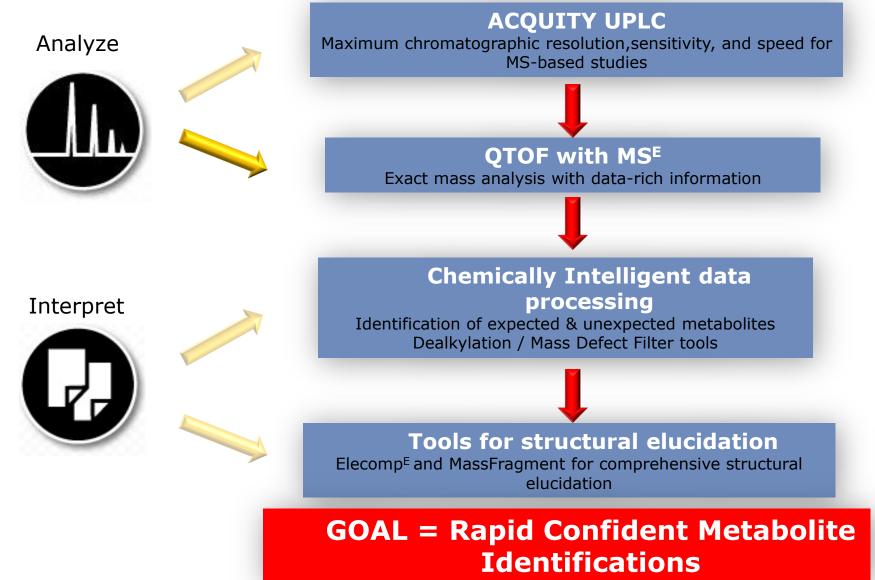
*ranked by global prescription drug sales


Drug Metabolism Workflow t Maximize Productivity

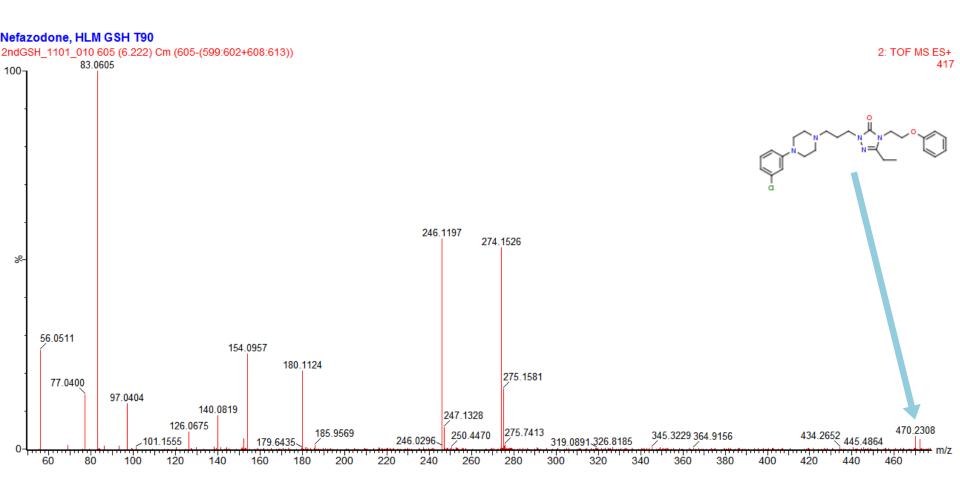
Waters THE SCIENCE OF WHAT'S POSSIBLE."


A Typical Metabolite ID Experiment

Waters THE SCIENCE OF WHAT'S POSSIBLE


Our Metabolite Identification WorkFlov

Metabolite ID Workflow to Maximize Productivity



©2010 waters Corporation 31

Collect MS/MS of Parent Compound

Waters

- The goal is to provide the most likely structure for the fragment ions generated and reduce the bottleneck in the processing and rationalization of structural fragment assignment
- This software algorithm assigns structures by taking fragment ion spectra of the drug or compound and using it to automatically calculate fragments based on a series of novel chemically intelligent algorithms
- This approach is based on systematic bond disconnection for the precursor structure instead of the usual 'rule based approach'

MassFragment

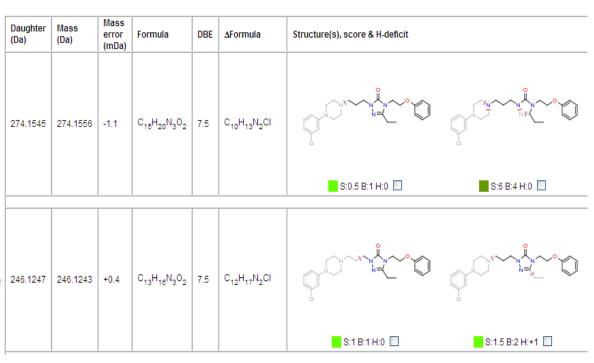
Submission

⊙ Structure		$\hat{\mathbf{v}}$		
Product ion(s) (Da)	55.9926 5 56.0237 2 56.0511 109 69.0095 4 77.0400 59 83.0605 417 83.7390 1		n (10) % (2) +/- (10)	ve oneutral o-ve top ions (raw only) Int. cutoff (raw only) 0.1 0.01 cture results:
DBE	0 to 50			
Electron count	odd: 🔘	even: 🔘 t	ooth: 💿	
Maximum H deficit	6			
Fragment number of bonds	one: 🔘 (fastest)	two: 🔘 🛛 t	hree: 🔘 fo	ur: 💿 (fast)
Scoring method	use <u>SMARTS</u> : O	use scorir	ng function: 💿	
Scoring function parameters	phenyl: 8 aron	natic: 6 multiple: 4	ring: 2	single: 1
General parameters	hetero modifier: 0.5	H-penalty: 0	max score:	16
Output order by	mass: 💿	intensity: 🔘		

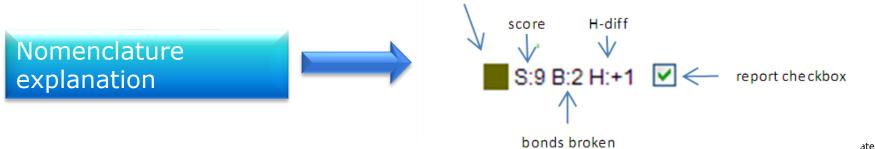
Systematic Bond Disconnection and Exact Mass - MassFragment

Waters

Report



Experiment:


	171.0973 197.0782 227.2023 268.1506 296.1432 426.1859 507.2465 533.2224
Product ion(s) (Da)	721.3160
	+/- 0.01 in positive mode, structure filter on
DBE	0 to 50
Electron count	both
Maximum H deficit	6
Fragment number of bonds	4
Scoring	aromatic: 6, multiple: 4, ring: 2, phenyl: 8, other: 1
scoring	H-deficit: 0, hetero modifier: 0.5, max score: 16
Order:	intensity
Plot:	show 🔘 hide 🔘

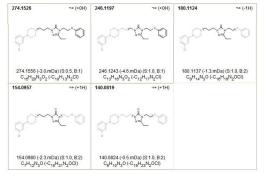
Results

Results:

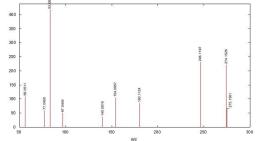
A color that corresponds to the score: green (low) -> red(high)

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

Report


Input:

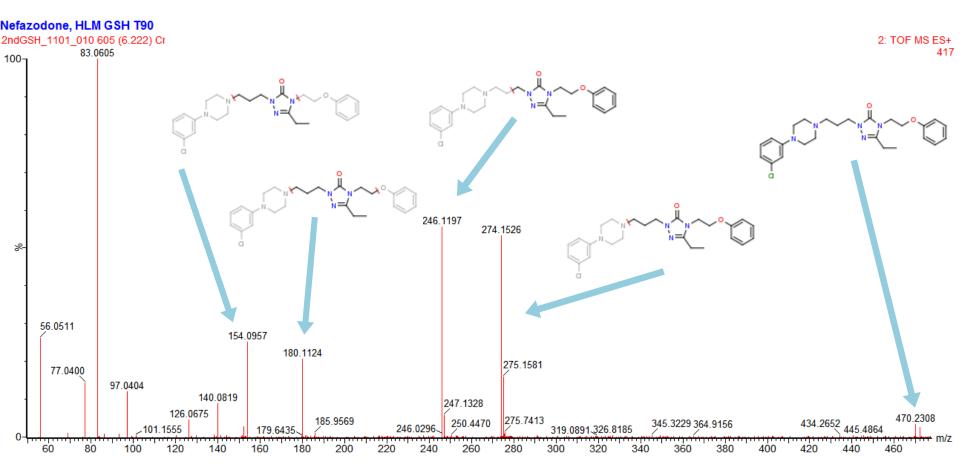
	ID (job)	38	
~~~~	Mass (Da)	469.2245	
ç"~ "~ `	Formula	C ₂₅ H ₃₂ N ₅ O ₂ Cl	
	DBE	12	


#### Experiment:

Product ion(s) (Da)	140.0819 154.0957 180.1124 246.1197 274.1526 275.1581 56.0511 77.0400 83.0605 97.0404 +/- 0.01 in positive mode, structure filter 1
DBE	0 to 50
Electron count	both
Maximum H deficit	6
Fragment number of bonds	4
Scoring	aromatic: 6, multiple: 4, ring: 2, phenyl: 8, other: 1 H-deficit: 0, hetero modifier: 0.5, max score: 16
Order:	mass
Plot:	show 💿 hide 🔘
Files:	DMX CSY

Results:




Nefazodoge, HLM GSH T90 - 2 rdGSH_1101_010 605 (6.222) Cm (605-(599.602+608.613)) - 2: TO F MS ES+

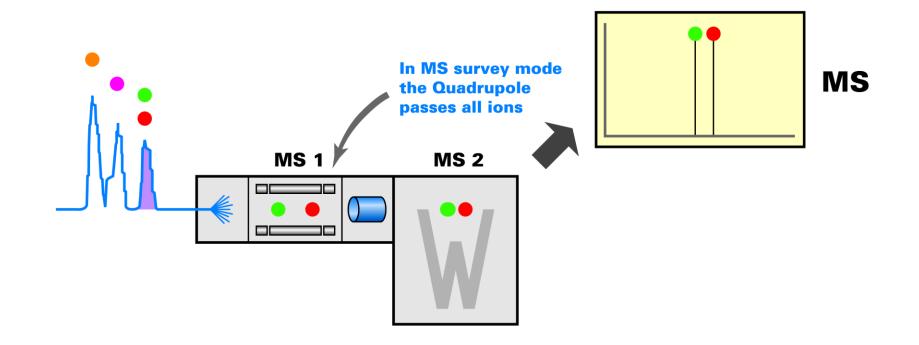


#### Results:

274.1526 ¬+ (+0H)	246.1197 ¬+ (+0H)	180.1124 ¬+ (-1H)
274.1556 (-3.0.mDa) (S:0.5, B:1) C ₁₅ H ₂₀ N ₃ O ₂ (-C ₁₀ H ₁₃ N ₂ Cl) <b>154.0957</b> ¬+ (+1H)	246.1243 (-4.6.mDa) (S:1.0, B:1) $C_{13}H_{16}N_3O_2$ (- $C_{12}H_{17}N_2CI$ ) 140.0819 $\neg$ + (+1H)	180.1137 (-1.3.mDa) (S:1.0, B:2) C ₉ H ₁₄ N ₃ O (-C ₁₆ H ₁₉ N ₂ OCI)
154.0980 (-2.3.mDa) (S:1.0, B:2) C ₇ H ₁₂ N ₃ O (-C ₁₈ H ₂₁ N ₂ OCI)	140.0824 (-0.5.mDa) (S:1.0, B:2) C ₆ H ₁₀ N ₃ O (-C ₁₉ H ₂₃ N ₂ OCI)	



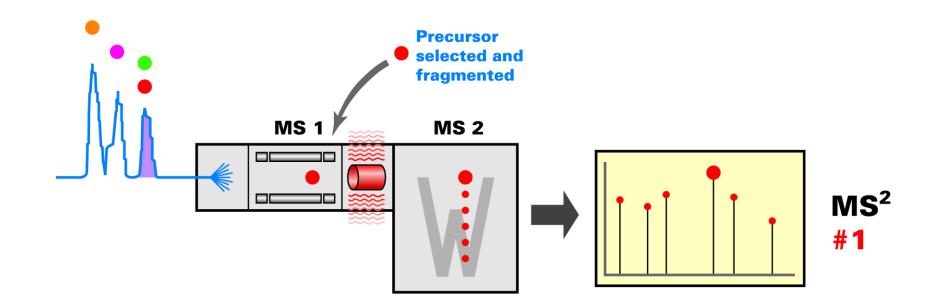





### Acquiring a Comprehensive MS and MS/MS Data Set

©2010 Waters Corporation 38

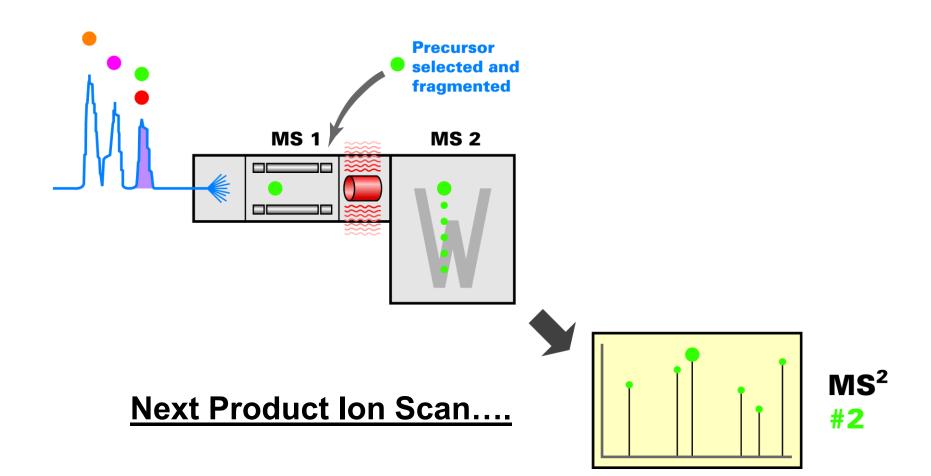
### Conventional Data Directed LC-MS/MS





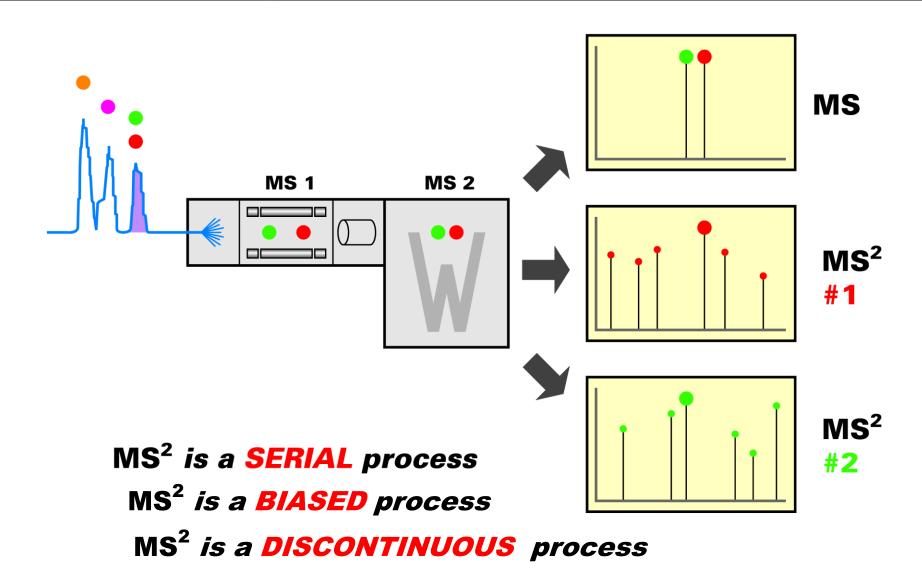

### **Precursor Survey Scan**

### Conventional Data Directed LC-MS/MS


Waters THE SCIENCE OF WHAT'S POSSIBLE."

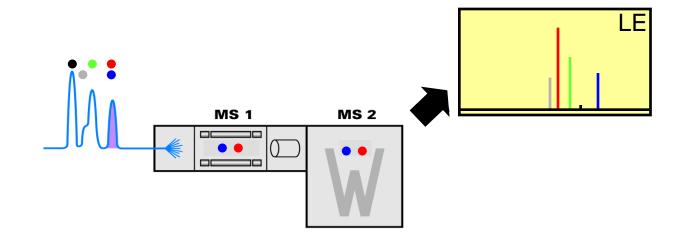


# Product Ion Scan Precursor Ion Selection Which one(s)? Ion Transmission Window +/- 2 Da


### Product Ion Spectrum Typically very fast (.1-1 second)

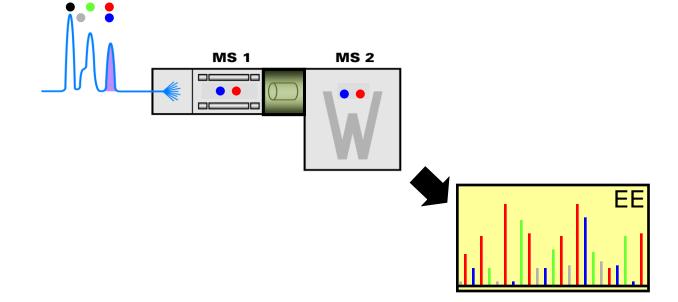
Waters




# Data Directed Analysis LC-MS/MS

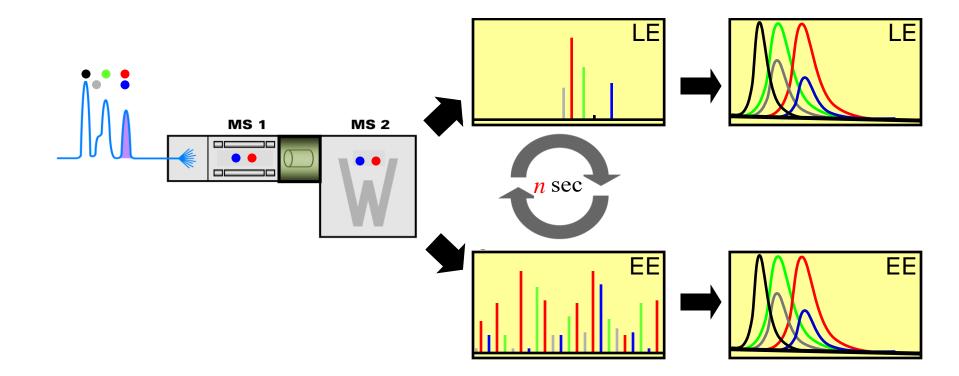





# Alternate Scanning LC-MS (LC-MS^E)

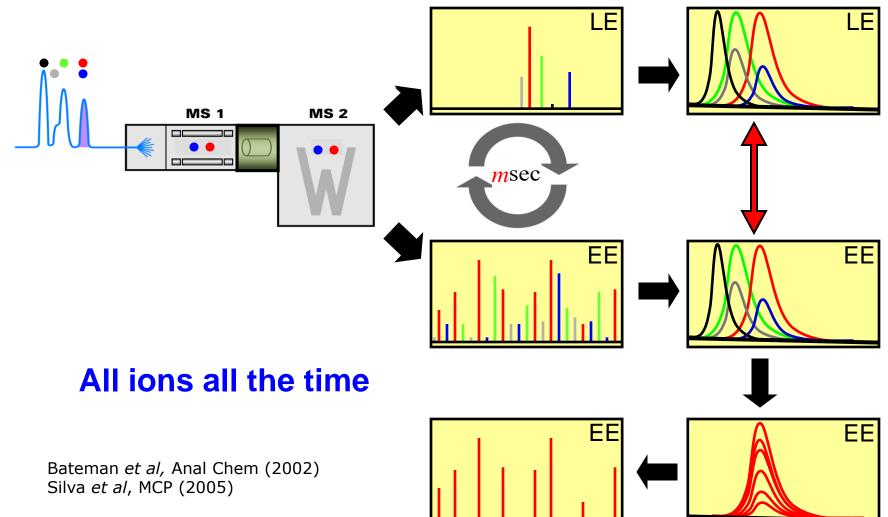





### Alternate Scanning LC-MS (LC-MS^E) ....monitor fragments (no pre-selection)

Waters

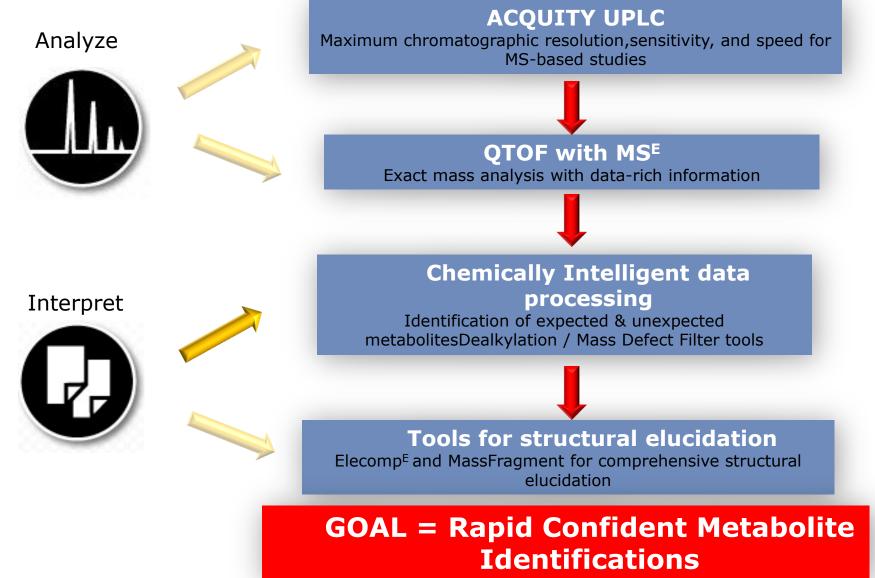



# Alternate Scanning LC-MS (LC-MS^E)





# Alternate Scanning LC-MS (LC-MS^E)

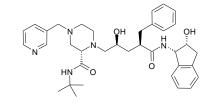

...time resolved mass measurements



*Patented technology

Metabolite ID Workflow to Maximize Productivity






©2010 waters Corporation 47



- Widely applied to chromatographic data sets by Zhang et al, Bateman et al.
  - Integral part of many LC-based metabolite ID workflows
- MetaboLynx XS chemically intelligent MDF that incorporates novel, structure-based dealkylations

# Indinavir

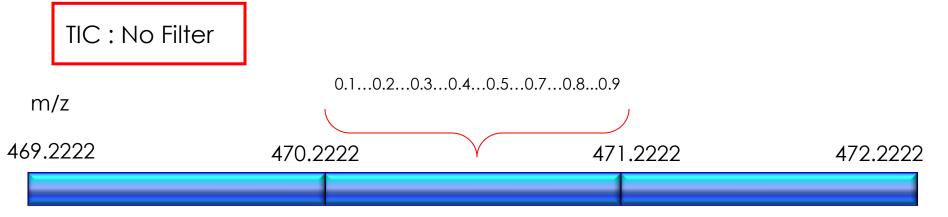


C36H48N5O4

MH+ = 614. **3706** 

# Significance of exact mass filtering

Waters

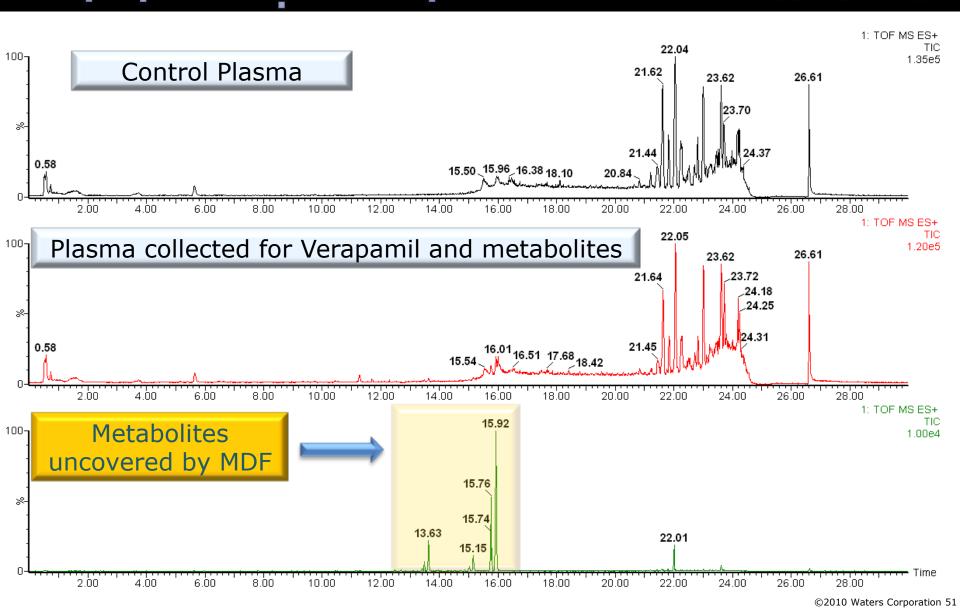

Biotransformation	Nominal mass	Accurate mass	Decimal Place shift	t
+0	+16	+ 15.9949	- 0.0051	
+0 ₂	+32	+ 31.9898	- 0.0102	Phase1
-H ₂	-2	- 2.0157	- 0.0157	Metabolism
-CH ₂	-14	- 14.0157	- 0.0157	< 0.04
-CI+O	-18	- 17.9662	+0.0338	
+C ₂ H ₂ O	+42	+ 42.0106	+0.0106	
+SO ₃	+80	+ 79.9568	- 0.0432	Phase2
+C ₆ H ₈ O ₆	+176	+176.0321	+0.0321	Metabolism
+C ₆ H ₈ O ₇	+192	+192.0270	+0.0270	< 0.07
+C ₂ H ₅ NO ₂ S	+107	+107.0042	+0.0042	
+C ₁₀ H ₁₅ N ₃ O ₆ S	+305	+305.0682	+0.0682	

*The mass shift may be larger if a compound undergoes O-Dealkylation or N-Dealkylation

# Mass defect filtering for full scan MS

Waters THE SCIENCE OF WHAT'S POSSIBLE."

Compound A : m/z = 471.2222



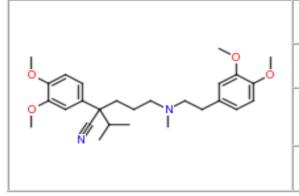





### Mass Defect Filtering Filtering out false positives

Waters

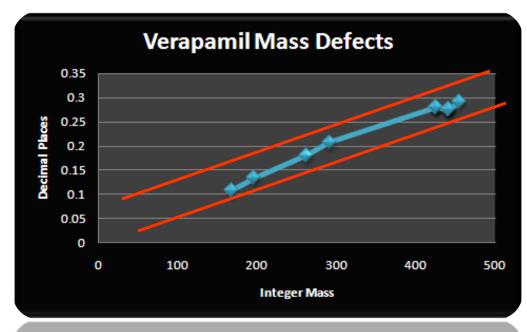



# **Risks involved in setting up the MDF**



- It is not a linear relationship with mass!
- Fixed linear MDF difficult to automate because risk of metabolic cleavages
- Depends whether S, Cl or Br present
- We can miss important metabolites if filters are not set-up correctly → false negatives
- The C-Heteroatom tool is key to provide the `correct MDF's

# Dealkylated metabolites → Linear Mass Defect for Verapamil





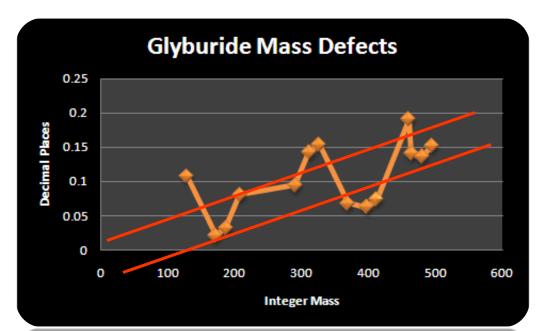

ID (job)	155
Mass (Da)	454.2832
Formula	C ₂₇ H ₃₈ N ₂ O ₄
DBE	10

-	none
R_12: -C17H24N2O2	167.0994
R_11: -C16H21NO2	196.1260
R_10: -C11H15NO2	262.1729
R_9: -C10H12O2	291.1994
R_8: -CH2O	425.2726
R_7: -CH2O	425.2726
R_6: -CH2O	425.2726
R_5: -CH2O	425.2726
R_4: -CH2	441.2675
R_3: -CH2	441.2675
R_2: -CH2	441.2675
R_1: -CH2	441.2675
R_0: -CH2	441.2675
none	455.2832

#### Linear Relationship integer mass vs. decimal places

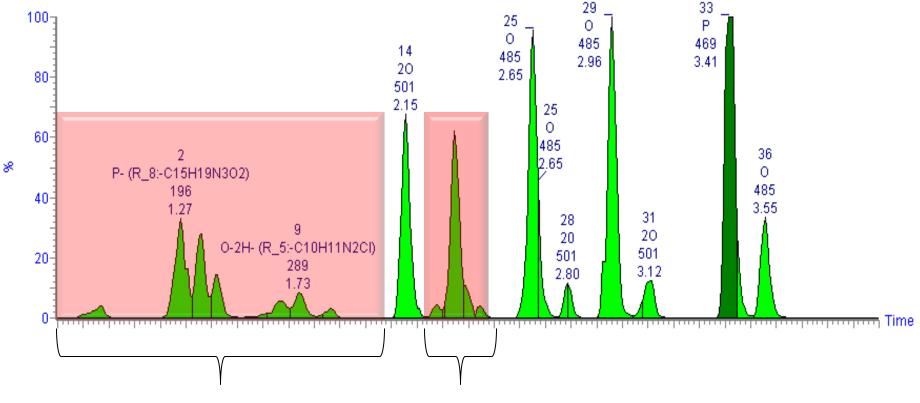


nteger Mass


## Dealkylated metabolites -> Non-Linea Mass Defect for Glyburide

Waters

ID (job)	156
Mass (Da)	493.1438
Formula	C ₂₃ H ₂₈ N ₃ O ₅ SCI
DBE	11


-	none
R_12: -C16H15N2O4SCI	128.0997
R_11: -C15H21N3O3S	171.0134
R_10: -C15H20N2O3S	186.0243
R_9: -C16H14NO2CI	207.0725
R_8: -C7H12N2O3S	290.0869
R_7: -C8H6NO2CI	311.1351
R_6: -C8H5O2CI	326.1460
R_5: -C7H11NO	369.0597
R_4: -C6H11N	397.0546
R_3: -C6H10	412.0655
R_2: -CI+H	460.1827
R_1: -CH2O	464.1332
R_0: -CH2	480.1281
none	494.1438



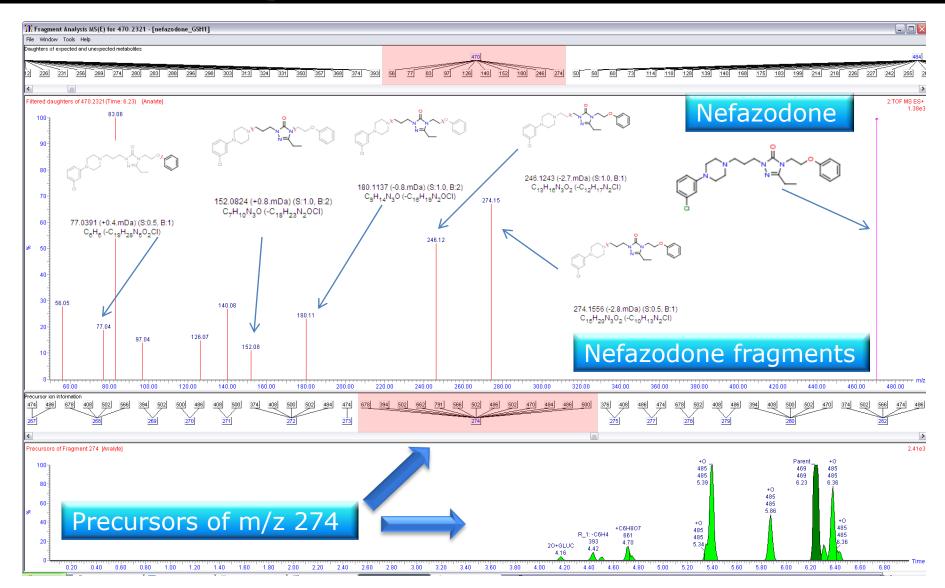


# Linear Fixed MDF vs. Intelligent MDF

Combined Metabolite Peaks (All Found and Unexpected Peaks) [Analyte]



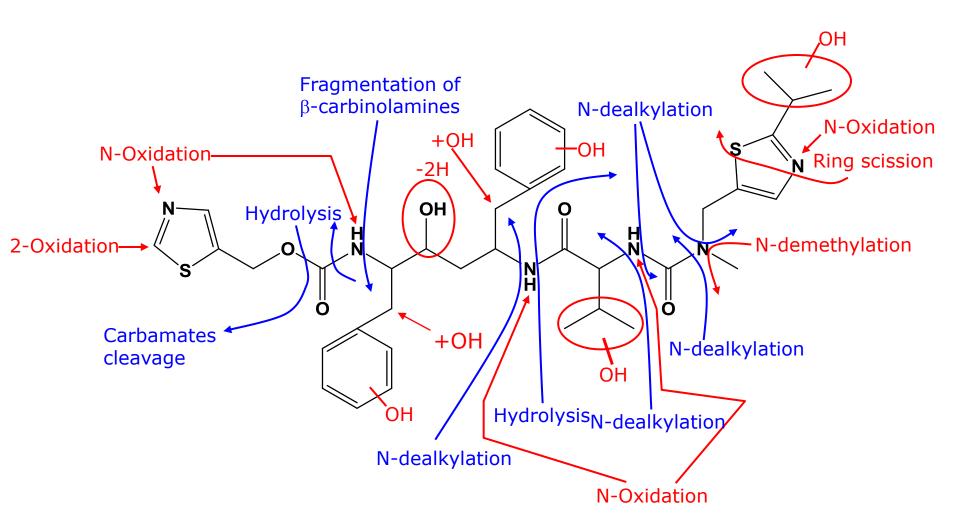
#### Metabolic cleavages detected by Intelligent MDF


1.01e4

HAT'S POSSIBLE."

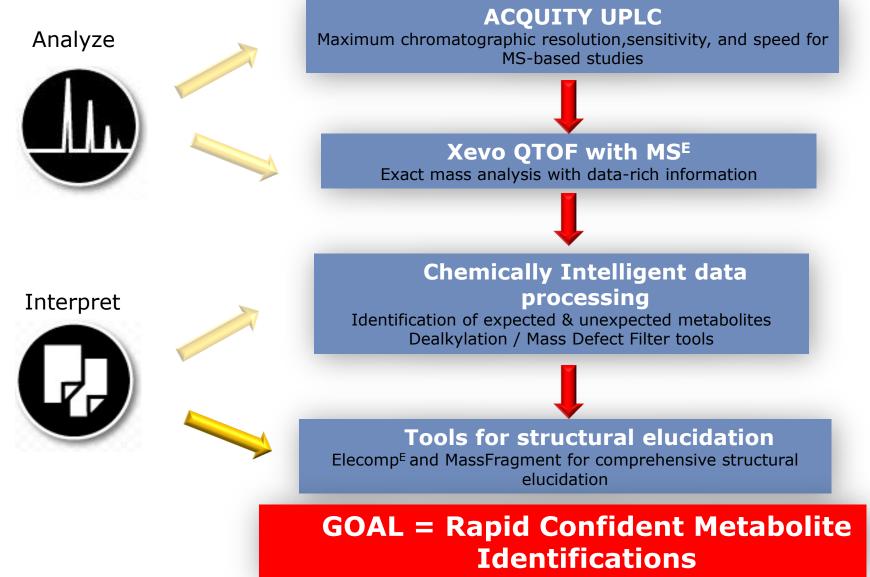
Waters

THE SCIENCE OF W


#### Parent compound fragment ion characterization with Metabolynx, MS^E & Woters MassFragment

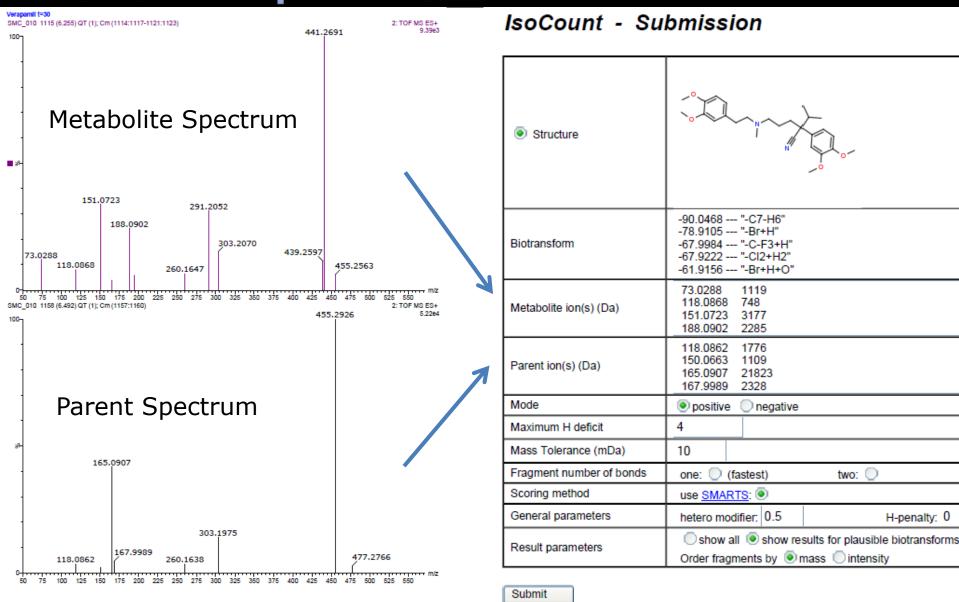


©2010 Waters Corporation 56


### Dealkylations and other Biotransformations



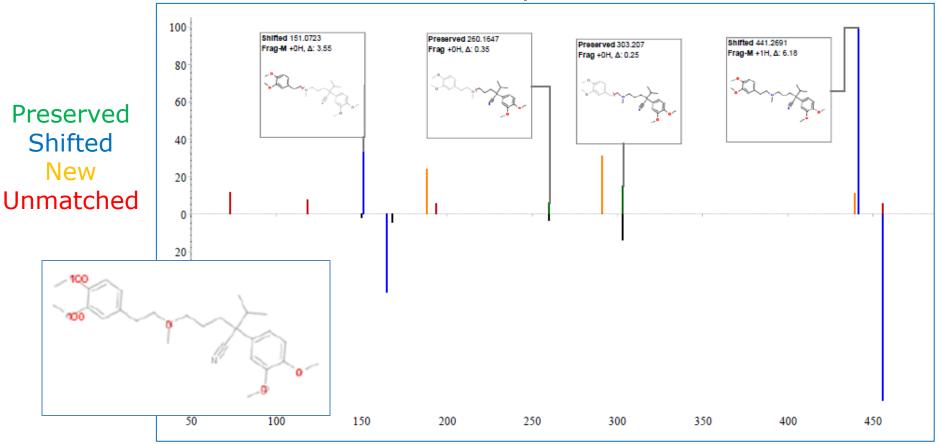



Metabolite ID Workflow to Maximize Productivity





# **IsoCount Metabolite Localization**


Waters



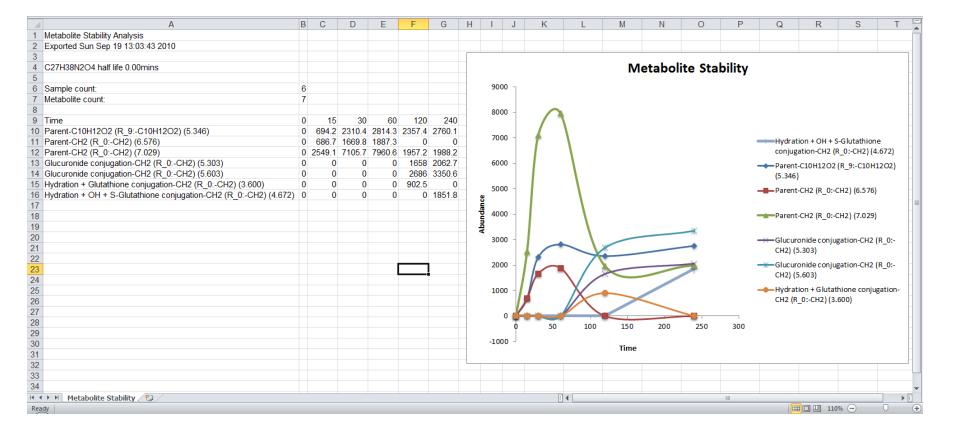
# **Spectral Peak Match Mirror Plot**

Waters THE SCIENCE OF WHAT'S POSSIBLE."

#### Metabolite Spectrum



Parent Spectrum




-							
MetaboLynx XS Brows	er - [18M	ar10_AFAN	IM]				
Eile Edit View Tools Y	<u>M</u> indow <u>H</u> i	P					
	0	💌 Y	H I F H B		?		
Plate: 2 Vial: 4	Expect	ed Metabol	lites - 18Mar10 09A	FAMM_MDF_25, Verapamil 1 uk	T60. MSe. Re	solutio	n. pare
	Status	m/z Found	Metabolite Name		Formula	mDa	Time
17	$\checkmark$	617.3074	n-CH2 (R_0:-CH2)	C32H44N2O10	0.0	6.75	
25	<b>√</b>	617.3067	Glucuronide conjugatio	n-CH2 (R_0:-CH2)	C32H44N2O10	-0.7	6.37
33	<b>√</b>	604.2974	Deethylation + Glucuro	onide conjugation	C31H43N2O10	-2.2	6.80
41 • • • • • • • • •	<b>√</b>	489.2976	Alkenes to dihydrodiol		C27H40N2O6	1.2	9.67
	<b>√</b>	471.2850	Hydroxylation		C27H38N2O5	-0.9	9.06
Samples,	<b>√</b>	457.2712	C26H36N2O5	1.0	6.65		
• • •	<b>√</b>	457.2681	Demethylation + hydro	oxylation	C26H36N2O5	-2.1	6.10
Time	<b>√</b>	455.2901	C27H38N2O4	-0.9	8.87		
Course	<b>√</b>	441.2740	Demethylation		C26H36N2O4	-1.3	8.70
Course	<b>√</b>	427.2608	Deethylation		C25H34N2O4	1.1	6.29
	<b>√</b>	427.2600	Deethylation		C25H34N2O4	0.3	8.00
	$\checkmark$	307.2027	Hydroxylation-C10H12	O2 (R_5:-C10H12O2)	C17H26N2O3	0.6	4.31
	$\checkmark$	307.2000	Hydroxylation-C10H12	O2 (R_5:-C10H12O2)	C17H26N2O3	-2.1	3.29
	$\checkmark$	293.1831	Demethylation + hydro	xylation-C10H12O2 (R_5:-C10H12O2)	C16H24N2O3	-3.4	5.27
	$\checkmark$	291.2064	Parent-C10H12O2 (R_	5:-C10H12O2)	C17H26N2O2	-0.8	6.53
		977 1000	Described and Crours	002/B_E_C10U1202)	C1/(U04N000		4 04
250(Time: 6.75) Combine	<176		1:TOF MS ES+ 3.71e4	Combined Metabolite Peaks (All Fo	und Peaks) (Ana	lyte]	
100-	617.3	074	0.7164	Parent-C10H1:	2O2 (R_5:-C10H1 290	202)	
					6.53	i i	
					©2010 Wat	tors Corno	ration 61

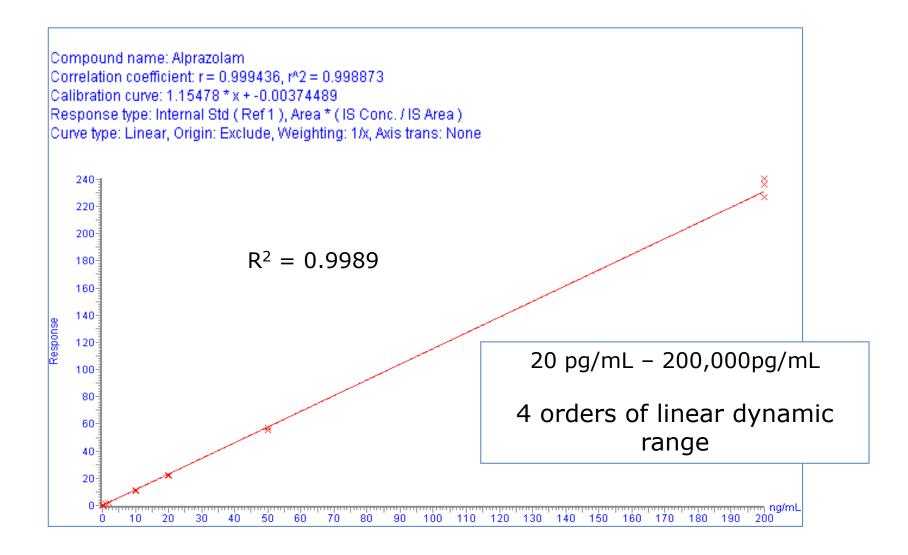
©2010 Waters Corporation 61

# Accessible Quantitative Analysis





#### Generates snapshot of metabolism for directing future studies


# Waters

Metabol ynx x5 browse	r - [18Mar10	_AFAMM	]															
Eile Edit View Tools W										_ 8 ×								
🖆 🖬 🖻 🛄 🛍 🔛	00	<u> </u>	▲ ● ▶ ₩ ₽ € ☎ <u>₩</u> ₩₩⊟	?													ſ	
Plate: 2 Vial: 4	Expected M	etabolite	es - 18Mar10_09AFAMM_MDF_25, Verapamil 1 u	M T60, MSe, Re	solution	ı, paren	t C27H3	🎽 Tar	getLynx - Alp_25Ma	r10_200A.qld (Read Only)							L	
			Metabolite Name	Formula	mDa		Area Abs	<u>File E</u> o	it <u>V</u> iew <u>D</u> isplay <u>P</u> roc	essing <u>W</u> indow <u>H</u> elp								
17			Glucuronide conjugation-CH2 (R_0:-CH2)	C32H44N2O10	0.0	6.75	544.70	<u>_</u>	🏑 👯 🔚 🛛	¥ 🜉 🖣 🕪 - 🍫 🍫	- 48 30	. M				M 🔿 🥭		
25 • • • • • • • • • • • • • • • • • • •			Glucuronide conjugation-CH2 (R_0:-CH2) Deethylation + Glucuronide conjugation	C32H44N2O10 C31H43N2O10	-0.7 -2.2	6.37 6.80	179.30 713.50	📂 🖻			1 N S	_ M 🛛	리쓰ㅣ	▥ 💵 📖	الكا لكار			3
41 • • • • • • • •	✓ 489	.2976	Alkenes to dihydrodiol	C27H40N2O6	1.2	9.67	39.70				A	prazolam						
			Hydroxylation Demethylation + hydroxylation	C27H38N2O5 C26H36N2O5	-0.9 1.0	9.06 6.65	89.10 46.60					prazolam						
			Demethylation + hydroxylation	C26H36N2O5	-2.1	6.10	48.20	<u>–</u>	# Name	Sample Text	Туре	Std. Conc	RT	Area	Response	Primary Flags	ng/mL	%De
			Parent	C27H38N2O4	-0.9	8.87	445.00	밀1	1 25Mar10_Alp013	0.01 ng/mL alprazolam in plasma	Standard	0.010	1.43	8.129	0.011	bb	0.0127	26
			Demethylation Deethylation	C26H36N2O4 C25H34N2O4	-1.3 1.1	8.70 6.29	227.80 36.10	2	2 25Mar10_Alp014	0.01 ng/mL alprazolam in plasma	Standard	0.010	1.42	10.645	0.014	bb	0.0154	53
			Deethylation	C25H34N2O4	0.3	8.00	44.30	3	3 25Mar10_Alp015	0.01 ng/mL alprazolam in plasma	Standard	0.010	1.43	8.788	0.012	bb	0.0134	34
			Hydroxylation-C10H12O2 (R_5:-C10H12O2)	C17H26N2O3	0.6	4.31	151.80	4	4 25Mar10_Alp016	QC 0.02ng/mL alprazolam in plasma	Standard	0.020	1.43	16.806	0.022	bb	0.0222	11
			Hydroxylation-C10H1202 (R_5:-C10H1202) Demethylation + hydroxylation-C10H1202 (R_5:-C10H1202)	C17H26N2O3 C16H24N2O3	-2.1 -3.4	3.29 5.27	33.30 368.10	5	5 25Mar10_Alp017	QC 0.02ng/mL alprazolam in plasma	Standard	0.020	1.43	17.132	0.023	bb	0.0231	15.
	✓ 291		Parent-C10H12O2 (R_5:-C10H12O2)	C17H26N2O2	-0.8	6.53	4951.50	6	6 25Mar10_Alp018	QC 0.02ng/mL alprazolam in plasma	Standard	0.020	1.43	14.285	0.020	bb	0.0203	1.
	L	1000	Described and the contract (	C1/U0480000	0.0	4.00	00.40	7	7 25Mar10_Alp019	0.05ng/mL alprazolam in plasma	QC	0.050	1.43	35.487	0.050	bb	0.0467	-6.
50(Time: 6.75) Combine	<176		1:TOF MS ES+ Combined Metabolite Peaks (All F	ound Peaks) (Ana	alyte]			8	8 25Mar10_Alp020	0.05ng/mL alprazolam in plasma	QC	0.050	1.43	36.876	0.051	bb	0.0473	-5.
100-	617.3074		3.71e4 Parent-C10H	1202 (R_5:-C10H	1202)_			9	9 25Mar10_Alp021	0.05ng/mL alprazolam in plasma	QC	0.050	1.42	35.192	0.050	bb	0.0463	-7
				290 6.53	l l			10	10 25Mar10_Alp022	0.1ng/mL alprazolam in plasma	Standard	0.100	1.43	74.748	0.106	bb	0.0946	-5
				0.00				11	11 25Mar10_Alp023	0.1 ng/mL alprazolam in plasma	Standard	0.100	1.43	72.988	0.104	bb	0.0930	-7
80			× 50-				+ GI	12	12 25Mar10_Alp024	0.1 ng/mL alprazolam in plasma	Standard	0.100	1.43	66.447	0.099	bb	0.0887	-11
			-					13	13 25Mar10_Alp025	QC 0.2ng/mL alprazolam in plasma	Standard	0.200	1.43	131.644	0.195	bb	0.1724	-13
60-			0 ⁻¹	الم من مع من م					14 25Mar10_Alp026	QC 0.2ng/mL alprazolam in plasma	Standard	0.200	1.43	126.307	0.190	bb	0.1674	-16
								15	15 25Ma 10_Alp027	QC 0.2ng/mL alprazolam in plasma	Standard	0.200	1.43	132.971	0.198	bb	0.1750	-12
			1: TOF MS ES+ :617.307 0.05Da	[Analyte]				16	16 25Ma Alp028	0.5ng/mL alprazolam in plasma	QC	0.500	1.43	322.980	0.500	bb	0.4362	-12
40-	-618	3079	100 -						029	0.5ng/mL alprazolam in plasma	QC	0.500	1.43	323.932	0.497	bb	0.4340	-13.
			Glucuronide conju	igation-CH2 (R					_v_	0.5ng/mL alprazolam in plasma	QC	0.500	1.43	317.463	0.511	bb	0.4460	-10.
20-			≈ 50-	616 6.37						1.0ng/mL alprazolam in plasma	Standard	1.000	1.43	692.117	1.096	bb	0.9522	-4.
			0. 30							1.0ng/mL alprazolam in plasma	Standard	1.000	1.43	705.248	1.096	bb	0.9521	-4
441.	2729 _619.	3161								1.0ng/mL alprazolam in plasma	Standard	1.000	1.43	675.462	1.082	bb	0.9401	-6
04	500.00		1000.00 m/z 0-1	4.00					-34	QC 2.0ng/mL alprazolam in plasma	Standard	2.000	1.43	1262.481	2.134	bb	1.8510	-7
	500.00								20 25Ma ,p035	QC 2.0ng/mL alprazolam in plasma	Standard	2.000	1.43	1252.423	2.064	bb	1.7907	-10
			1: TOF MS ES+ :617.307 0.05Da	[Control]				24	24 25Ma _Alp036	QC 2.0ng/mL alprazolam in plasma	Standard	2.000	1.43	1209.636	2.112	bb	1.8320	-8
			100-3					25	25 25Ma 10_Alp037	5ng/mL alprazolam in plasma	QC	5.000	1.43	3194.469	5.423	bb	4.6994	-6.
			8 - LL. L.	الصفر بالشمان	ht. i.e.	فالسا	الالتنارية	26	26 25Mar10_Alp038	5ng/mL alprazolam in plasma	QC	5.000	1.43	3190.724	5.413	bb	4.6907	-6.
				4.00	6.00		8.00	27	27 25Mar10_Alp039	5ng/mL alprazolam in plasma	QC	5.000	1.43	3150.381	5.421	bb	4.6980	-6.
or Help, press F1								28	28 25Mar10_Alp040	10ng/mL alprazolam in plasma	Standard	10.000	1.43	6062.970	10.839	bb	9.3891	-6.
								29	29 25Mar10_Alp041	10ng/mL alprazolam in plasma	Standard	10.000	1.43	6020.000	10.916	bb	9.4557	-5.
								30	30 25Mar10_Alp042	10ng/mL alprazolam in plasma	Standard	10.000	1.43	5743.824	10.956	bb	9.4905	-5.
								31	31 25Mar10_Alp043	QC 20ng/mL alprazolam in plasma	Standard	20.000	1.43	11536.141	21.841	bb	18.9165	-5.
								32	32 25Mar10_Alp044	QC 20ng/mL alprazolam in plasma	Standard	20.000	1.43	11535.521	22.309	bb	19.3223	-3.
								33	33 25Mar10_Alp045	QC 20ng/mL alprazolam in plasma	Standard	20.000	1.43	11409.267	21.878	bb	18.9486	-5.
								34	34 25Mar10_Alp046	50ng/mL alprazolam in plasma	Standard	50.000	1.43	25764.422	55.504	bb	48.0681	-3
								35	35 25Mar10_Alp047	50ng/mL alprazolam in plasma	Standard	50.000	1.43	25481.125	55.548	bb	48.1059	-3
								36	36 25Mar10_Alp048	50ng/mL alprazolam in plasma	Standard	50.000	1.43	25182.746	57.220	bb	49.5536	-0
								37	37 25Mar10_Alp049	100ng/mL alprazolam in plasma	QC	100.000	1.43	44893.945	121.597	bb	105.3020	5
								38	38 25Mar10_Alp050	100ng/mL alprazolam in plasma	QC	100.000	1.43	44471.465	119.928	bb	103.8566	3
								39	39 25Mar10_Alp051	100ng/mL alprazolam in plasma	QC	100.000	1.43	44099.945	122.260	bb	105.8763	5
								40	40 25Mar10_Alp052	QC 200ng/mL alprazolam in plasma	Standard	200.000	1.43	65813.773	227.101	bb	196.6647	-1
								41	41 25Mar10_Alp053	QC 200ng/mL alprazolam in plasma	Standard	200.000	1.43	65639.305	236.276	bb	204.6101	2
								42	42 25Mar10_Alp054	QC 200ng/mL alprazolam in plasma	Standard	200.000	1.43	64212.516	240.477	bb	208.2485	4.

©2010 Waters Corporation 63

### Alprazolam MS^E Data Quantitation Curve







# **Additional Capabilities**

# **Application System Solutions**





MetaboLynx[™] XS MarkerLynx[™] XS BiopharmaLynx[™] i-FIT[™] ChromaLynx[™] TargetLynx[™] MassFragment[™] OpenLynx[™] ProteinLynx Global SERVER[™]

©2010 Waters Corporation 66

#### 'Game-Changing' ...accesses the widest range of compounds & applications

#### Waters THE SCIENCE OF WHAT'S POSSIBLE."



Multimode source ESI – Electrospray Ionization APCi – Atmospheric Pressure Chemical Ionization ESCI® – Dual ESI and APCi



Dual mode source APPI – Atmospheric Pressure Photo Ionization APCi – Atmospheric Pressure Chemical Ionization



TRIZAIC[™] Source with nanoTile Technology. Plug & Play nanoFlow



nanoFlow™ESI

# MALDI nanoFlow ESI APCi ESCi APPI TRIZAIC ASAP APGC



MALDI – Matrix Assisted Laser Desorption Ionization



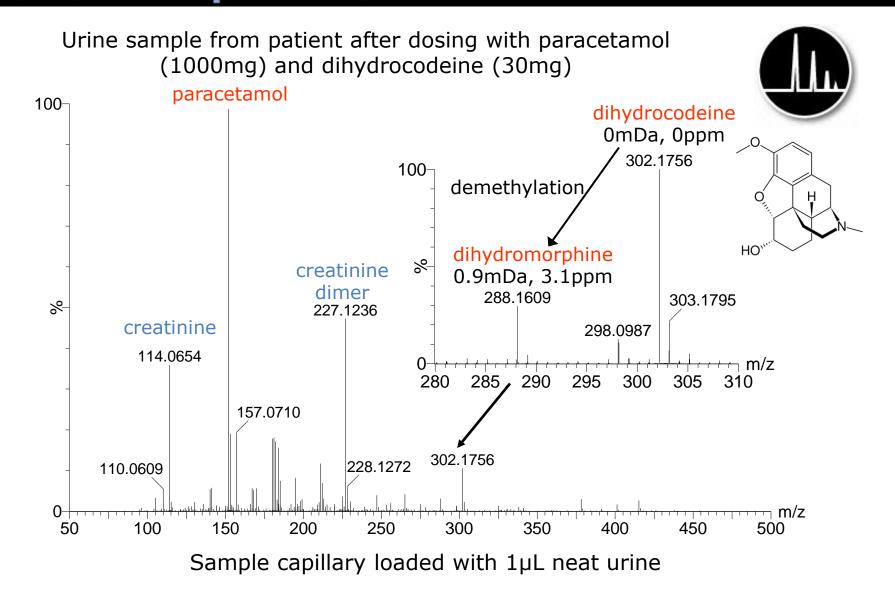
ASAP – Atmospheric Pressure Solids Analysis Probe



APGC – Atmospheric Pressure Gas Chromatography

# New Xevo source options

# Waters


#### ASAP

- Atmospheric pressure solids analysis probe
- Direct sample analysis
  - Fast analysis
  - No sample prep
  - No chromatography
  - Solids and liquids



#### Waters ASAP Metabolites in Urine

Waters



©2010 Waters Corporation 69

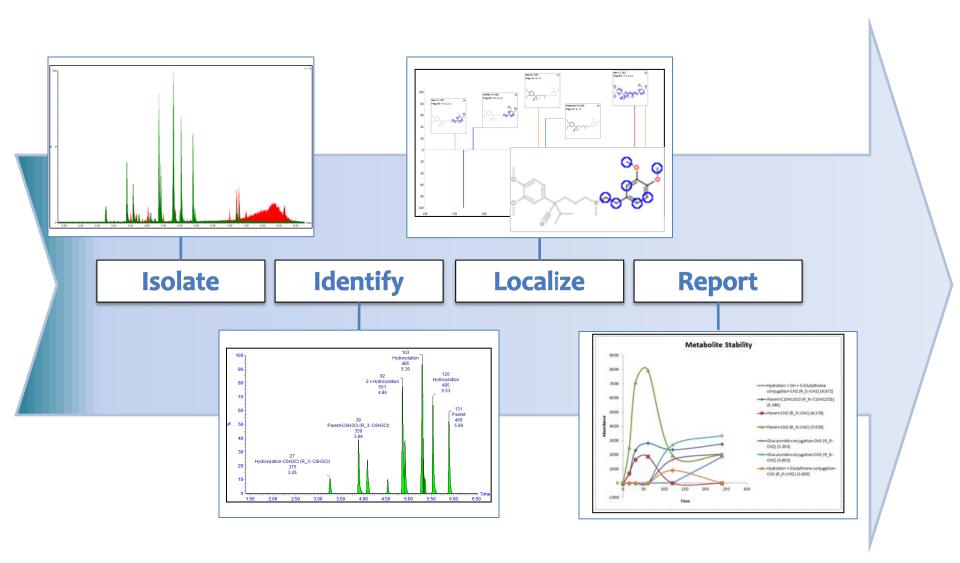
# New Universal source options



#### APGC

- Atmospheric pressure GC interface
- Extend compound coverage
  - LC & GC on one instrument
  - Very simple to exchange ion sources
  - Clean APCI type spectra






- Xevo G2 QTOF or Synapt G2 collect sensitive accurate mass data on ALL precursors and products eliminating extra analysis on the same sample
- MetaboLynx XS offers proven, intelligent (structure driven) interpretation of data in an Metabolite ID workflow
- Advanced structural interpretation and advanced elemental composition calculations allow for conclusive metabolite confirmation

#### Rapid, Confident, Metabolite Identifications

### Innovation. Productivity. Effective Decision Making

Waters

