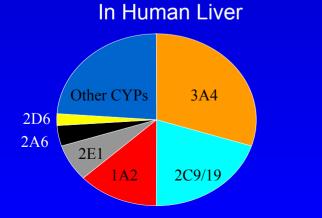
Drug-Drug Interactions: Inhibition and Induction

Michael W. Sinz, Ph.D. Pharmaceutical Candidate Optimization Metabolism and Pharmacokinetics Bristol Myers Squibb

Pharmaceutical Research Institute Wallingford, CT *michael.sinz@bms.com*

Drug Development Process: Discovery-Approval

			PI	P2	P3	
Disc	overy	Preclinical	C	linica		FDA Approval
<u>Time (</u>	(<u>yr)</u> : 4	2	1.5	2	3.5	1
<u>#'s</u> :	30,000	2000	200	40	12	8

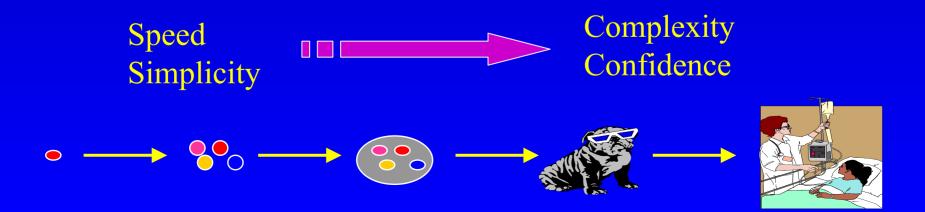

Drug Development Process-

- 10-15 years
- 500-800 million dollars
- 0.003% chance of a return on investment (1/30,000)

C&EN, 1/28/02, KJ Watkins and DDT 6(18), 2001 Shillingford and Vose

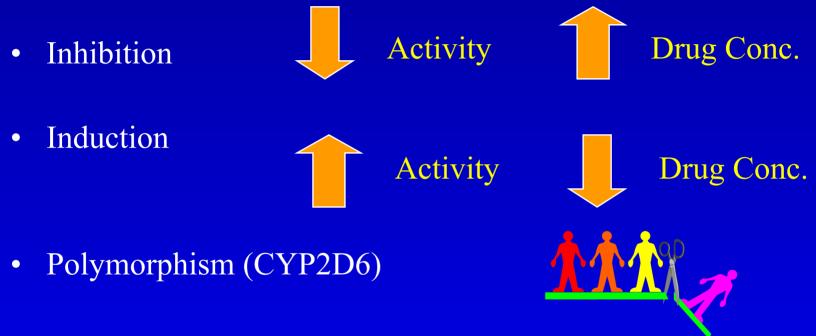
Drug Metabolizing Enzymes

- Liver is the major organ for drug metabolism / elimination
- Phase I and Phase II Enzymes
 - Phase I: oxidative or hydrolytic reactions
 - Phase II: conjugative reactions
- Predominate enzyme system that metabolizes drugs is the cytochrome P450 (CYP450) family of enzymes which mediate oxidation reactions, such as hydroxylations



Proportions of CYP450 Enzymes

CYP450	Known Drugs Metabolized
CYP1A2	4%
CYP2C9	10%
CYP2C19	2%
CYP2D6	30%
CYP3A4	50%


Model Systems to Study Drug Interactions

- In Vitro Systems
 - cDNA expressed enzymes (rCYP's)
 - microsomes (subcellular fraction of ER)
 - hepatocytes (primary cultures)
- In Vivo Systems
 - animals (mouse, rat, dog, monkey, transgenics)
 - humans (volunteers, patients)

Metabolic Drug Interactions

- Formation of reactive, toxic, or active metabolites
- Disease state

Examples of "Undesirable" Drugs

Recognized issue with regulatory agencies and the pharmaceutical industry.

Predict early and eliminate such compounds to avoid safety issues, regulatory obstacles, and market pressures.

Not All Drug Interactions Are Bad

The use of a cyclosporin–ketoconazole combination: making renal transplantation affordable in developing countries.

T. Gerntholtz, M. D. Pascoe, J. F. Botha, J. Halkett and D. Kahn. Eur J Clin Pharmacol (2004)

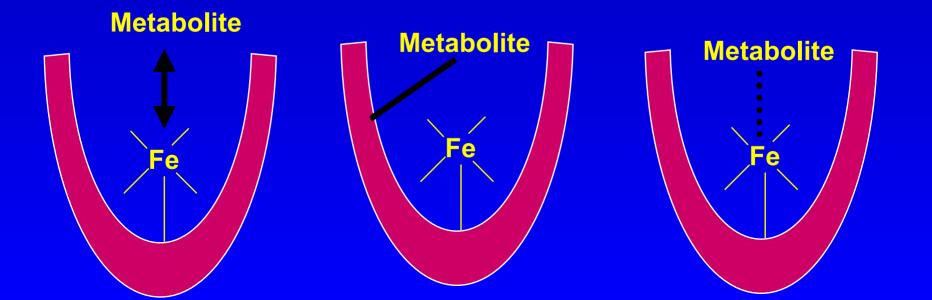
Pharmacokinetic enhancement of protease inhibitor therapy; Ritonavir-saquinavir; ritonavir-lopinavir

King JR, Wynn H, Brundage R, Acosta EP. Clin Pharmacokinet (2004)

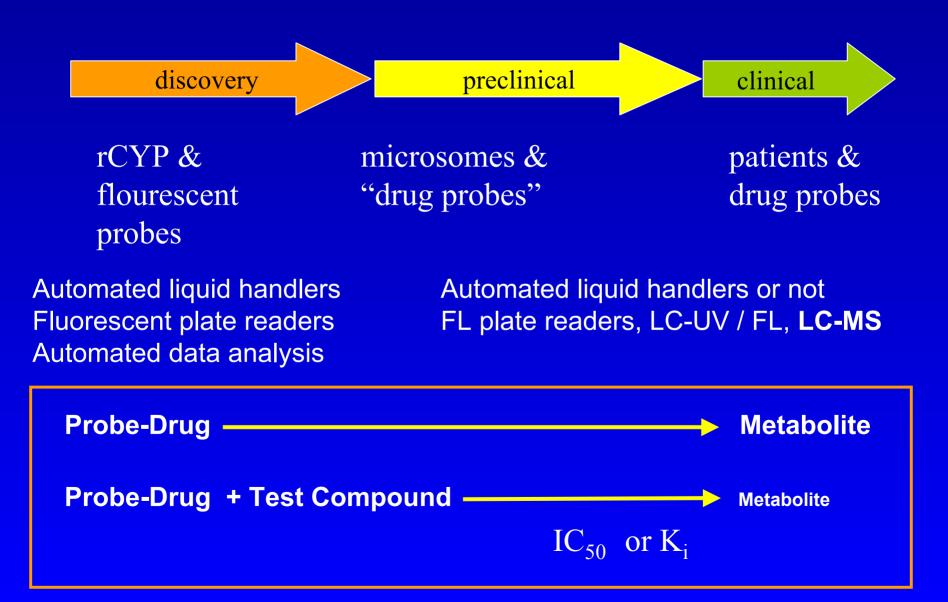
CYP450 - Mediated Interactions

CYP450 Inhibition

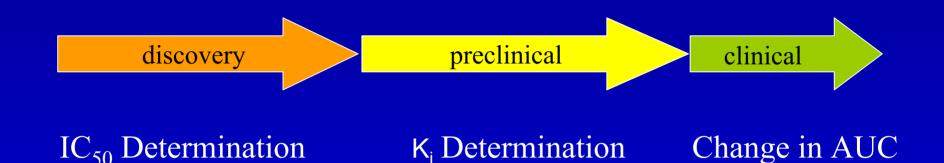
Reversible Inhibition


Irreversible Inhibition

Reversible vs Irreversible Inhibition


Reversible

True Irreversible


Quasi-Irreversible

CYP Inhibition: Models and Analytical Methods

How to Employ CYP Inhibition

Eliminate potent inhibitors Rank order compounds

> Characterize inhibition Predict interaction potential

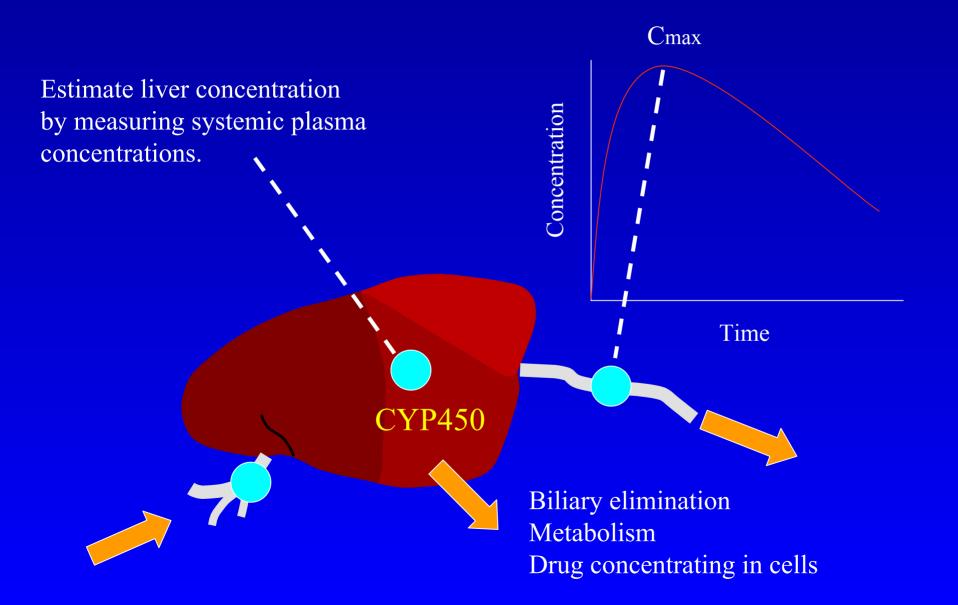
> > Assess changes in PK - increase in AUC

Semi-Quantitative Predictions of Drug Interactions

Relationship between in vitro K_i and plasma concentration of the inhibitor.

Generally accepted guideline for evaluating risk by PhRMA and regulatory agencies.

[I]/K_i > 1.0 [I]/K_i = 0.1 to 1.0 [I]/K_i < 0.1 (interaction "likely")

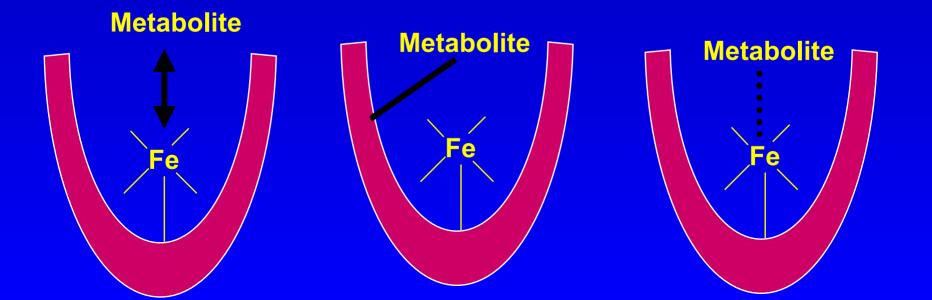

(interaction "possible")

(interaction "remote")

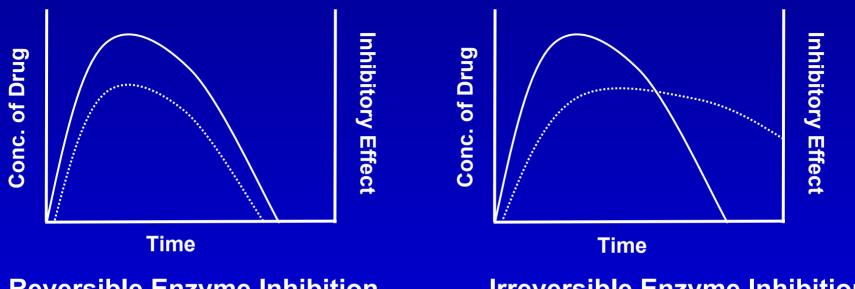
[I] = Plasma $C_{max,total (free and bound)}$

Bjornsson, et al. DMD (2003) and Tucker, et al. Pharm.Res. (2001)

Measurement of Plasma (Liver) Concentration



Reversible vs Irreversible Inhibition


Reversible

True Irreversible

Quasi-Irreversible

Duration of Inhibitory Effects

Reversible Enzyme Inhibition

Irreversible Enzyme Inhibition

Inhibition effect extends beyond elimination of drug due to enzyme inactivation. Effect tends to accumulate after each dose.

Inhibition effect is generally greater than predicted based on 'reversible' IC_{50} or K_i values.

Most compounds will have non-linear pharmacokinetics.

Rare cases of hepatotoxicity associated with covalently bound adducts.

More difficult to predict inhibitory effects in patients.

Examples of Reversible & Irreversible Inhibitors

Irreversible Inhibitors

Posicor

removed from the market due to CYP3A4 interactions major drug interactions, 2-10X changes in pharmacokinetics

Clarithromycin, Troleandomycin, Erythromycin

older drugs - irreversible inhibition was not understood moderate drug interactions (3A4), 2-6X changes in pharmacokinetics

Aitonavir

black box warning due to drug interactions major drug interactions (3A4), 2-50X changes in pharmacokinetics

Reversible Inhibitors

Ketoconazole

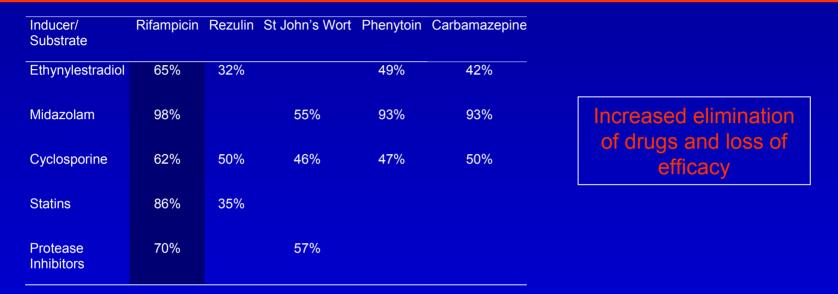
major drug interactions (3A4), 100X changes in pharmacokinetics

Quinidine, Paroxetine, Fluoxetine

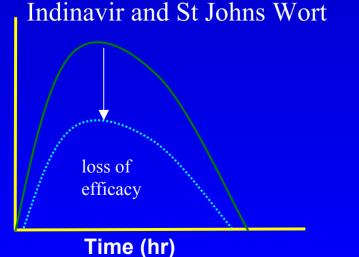
major drug interactions (2D6)

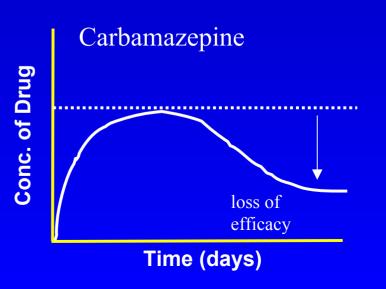
Magnitude of Interaction Correlates with Labeling

% Change AUC	Drug	Indication	Labeling
1490	Ketoconazole	Antifungal	Black box warning
			Warning, Contraindications
977	Itraconazole	Antifungal	Black box warning
			Warning, Contraindications
861	Clarithromycin	Antibiotic	Contraindications
790	Mibefradil	Hypertension, angina	Removed from market
418	Saquinavir	Protease inhibitor	Contraindications
341	Erythromycin	Antibiotic	Warning, Contraindications
275	Diltiazem	Hypertension, angina	Precautions
259	Fluconazole	Antifungal	Contraindications
192	Verapamil	Hypertension, angina	Precautions
102	Cimetidine	H2 antagonist	Precautions
66	Ranitidine	H2 antagonist	Precautions
50	Fluvoxamine	Obsesive/compulsive	Warnings, Contraindications

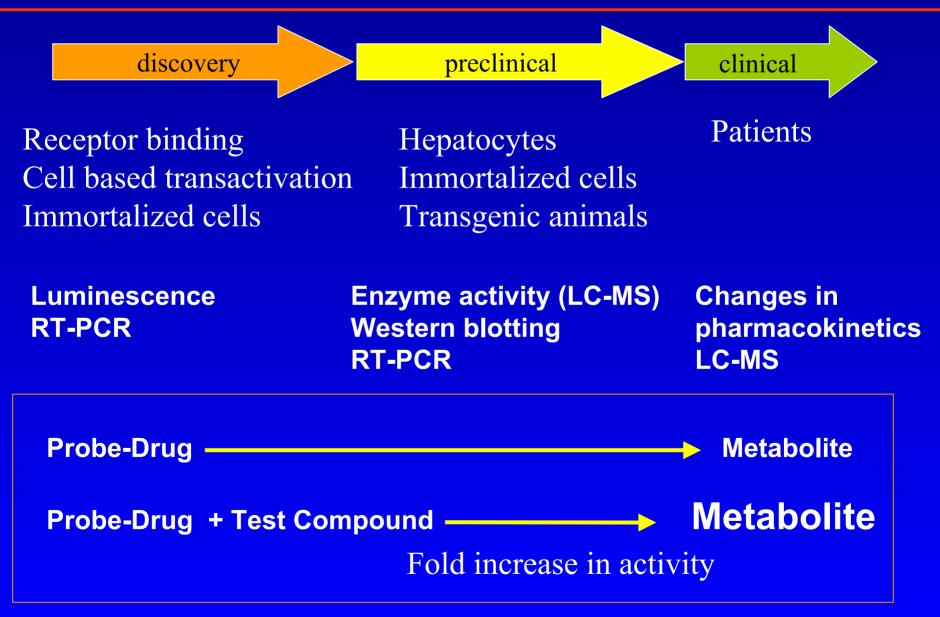

CYP450 - Mediated Interactions

CYP450 Induction

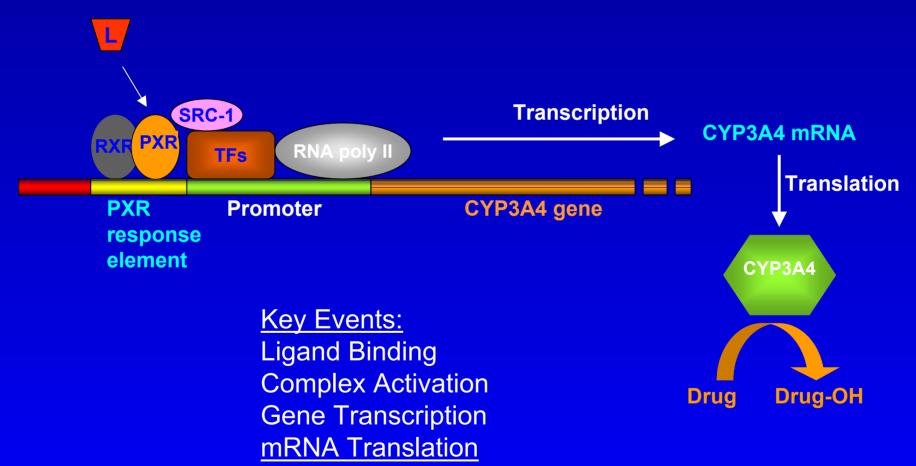

Induction


Autoinduction

Percent Reduction in AUC's Due to CYP3A4 Enzyme Induction

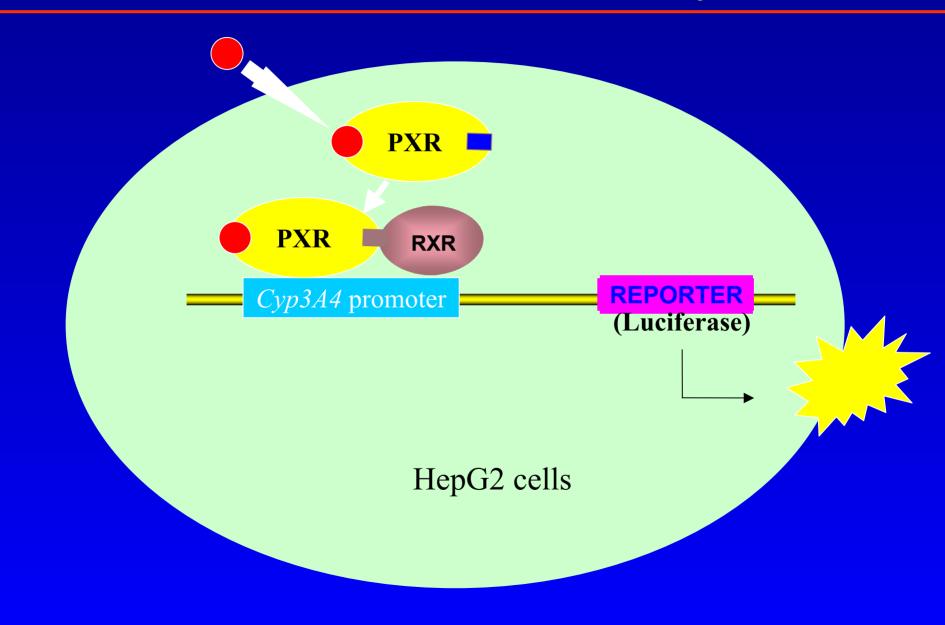


CYP Induction: Models and Analytical Methods

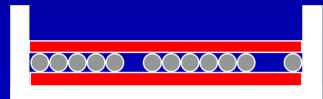


Nuclear Hormone Receptors Involved in Enzyme Induction of CYP450's

NHR	NHR	P450	Inducers
AhR	Aryl Hydrodrocarbon Receptor	1A	Cigarette Smoking
CAR	Constituitive Androstane Receptor	2B6	Phenobarbital Phenytoin
PXR/SXR	Pregnane X Receptor	3A4	Rifampicin Hyperforin
PPAR	Peroxisome Proliferator Activated Receptor	4A	Clofibrate
LXR/FXR	Liver & Farnesoid X Receptors	7A1	Oxysterols Bile Acids

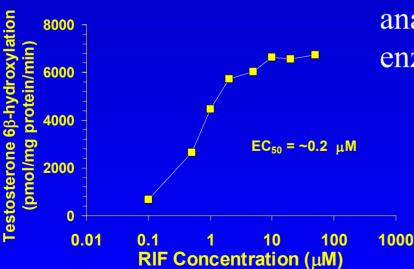

Major mechanism of enzyme induction involves increased transcription of P450 by NHR's. Minor mechanisms of induction include mRNA and protein stabilization (ie., longer half-life). Example: CYP2E1

PXR Mediated Induction of CYP3A4

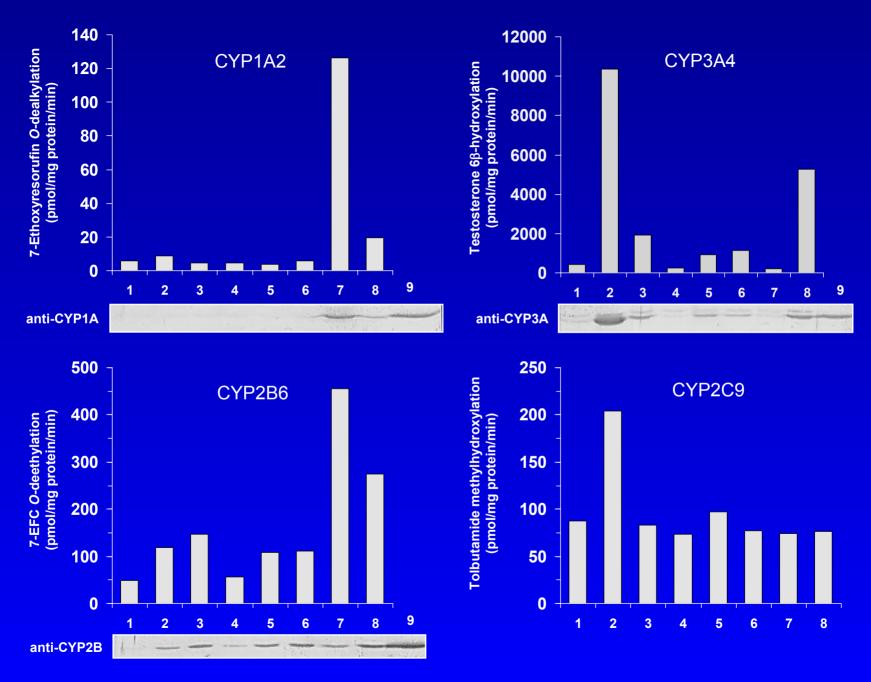


= Increased Enzyme Activity

PXR Transactivation Assay

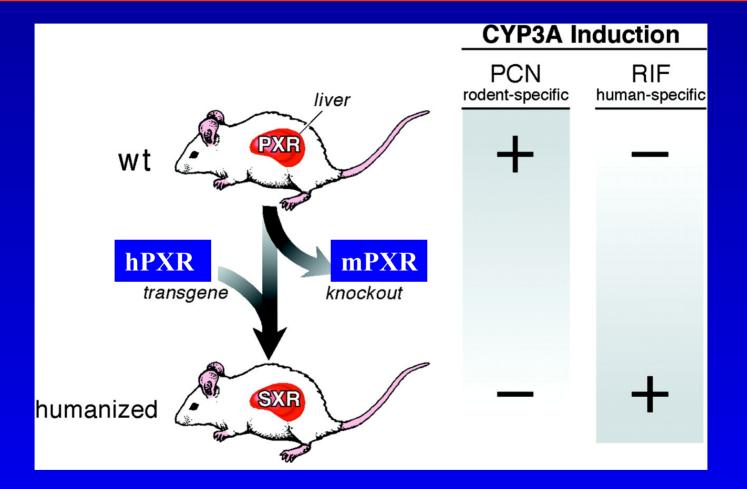


Primary Culture of Human Hepatocytes



ECM • Hepatocytes

Drug treatment for 3-5 days in culture.



Proteins and RNA extracted and analyzed by Western blotting, enzyme activity, and/or RT-PCR.

1 = CON, 2 = RIF, 3 = PB, 4 = CLF, 5 = PCN, 6 = MPN, 7 = OMP, 8 = PHN

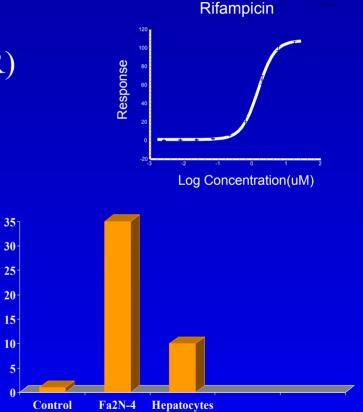
Knock Out and Transgenic PXR Mice

Potential model to bridge in vitro and in vivo data Still a mouse with a single gene change!

Animal Models of Human Induction? Species Differences

- Rezulin
 - potent human inducer
 - no induction in rats
- Rifampicin
 - potent inducer in humans and rabbits
 - weak inducer in rodents
- Pregnenolone 16-alpha Carbonitrile
 - potent inducer in rodents
 - weak inducer in humans
- Phenobarbital
 - fairly equal induction across species

Species	LBD Similarity			
Human	100%			
Rhesus	95%			
Pig	87%			
Dog	83%			
Rabbit	82%			
Mouse	77%			
Rat	76%			
	Human Rhesus Pig Dog Rabbit Mouse			


DYP

Due to species differences in PXR ligand binding site

Typical Responses to PXR Mediated Mechanism Rifampicin

- Receptor Binding Assays (PXR) $IC_{50} \sim 5 \text{ uM}$
- Transactivation-Reporter Assays (PXR)

- Immortalized Cell Lines (Fa2N-4)
- Primary Cell Lines (hepatocytes)

• Transgenic Animals (hPXR) – 5X increase in mRNA & activity

Fold Increase in CYP3A4 mRNA

• Clinical Studies (DDI) – 65-98% decreases in AUC

Summary

- Drug interactions are of great concern to both the pharmaceutical industry and regulatory agencies.
- Major drug interactions are caused by either inhibition or induction of drug metabolizing enzymes.
- Models provide numbers that must be placed in context with multiple factors:
 - therapeutic area
 - therapeutic drug concentrations
 - therapeutic index
 - route of administration
 - market competition
 - patient population

Summary

- Semi-quantitative predictions of drug interactions
 - many unknown factors
 - human ADME properties in vivo
- Animal models are not predictive of human interaction potential.
- Static nature of in vitro systems compared to the dynamic in vivo system
- Mixtures of interaction mechanisms from the same compound are extremely difficult to predict:
 - reversible + irreversible inhibition
 - inhibition + induction

Acknowledgments

A. David Rodrigues Ken Santone Sean Kim

References

Journal Articles

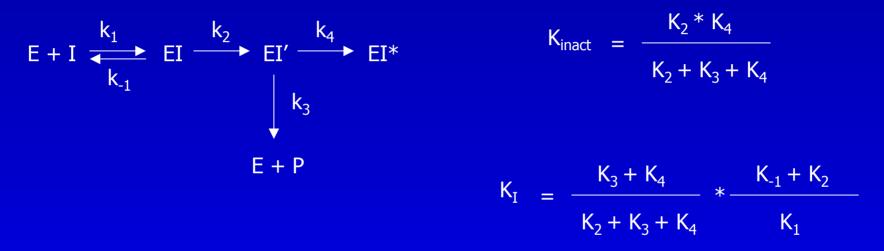
- T.D. Bjornsson, et al, The conduct of in vitro and in vivo drug-drug interaction studies: A pharmaceutical research and manufacturers of America perspective, Drug Met. Dispos. 31:815 (2003).
- J.H. Lin, Sense and nonsense in the prediction of drug-drug interactions, Curr. Drug Met. 1:305 (2000).
- Ito, et al, Prediction of pharmacokinetic alterations caused by drug-drug interactions: Metabolic interaction in the liver, Pharmacol. Rev. 50:387 (1998).

Regulatory Guidance

US FDA CDER, Guidance for industry: Drug metabolism/drug interaction studies in the drug development process: Studies in vitro, www.fda.gov/cder/guidance/clin3.pdf.
European agency for the evaluation of medicinal products, committee for proprietary medicinal products, Note for guidance on the investigation of drug interactions. CPMP/EWP/560/95, www.eudra.org.

Books

Drug Metabolizing Enzymes: Cytochrome P450 and other enzymes in drug discovery and development. Editors J.S. Lee, R. S. Obach, M.B. Fisher, Marcel Dekker, New York (2003).


Drug Drug Interactions, editor A. D. Rodrigues, Marcel Dekker, New York (2002).

Metabolic Drug Interactions, editors R.H. Levy, K.E. Thummel, W.F. Trager, P.D. Hansten, M. Eichelbaum, Lippincot Williams & Wilkines, New York (2000).

Handbook of Drug Metabolism, editor T.F. Woolf, Marcel Dekker, New York (1999).

Back Up Slides

Enzyme Kinetics of Irreversible Inhibition

K_{inact} - the maximal rate of enzyme inactivation

K_I - the concentration of inhibitor that gives 50% maximal inhibition

Partition Ratio = $K_3 / k_4 = [P]/[EI*]$

Assessing Inhibition Potential of Irreversible Inhibitors

Combining K_{inact}, K_I and Inhibitor Concentration

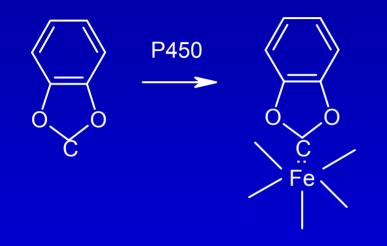
Lambda (λ) = [I] * K_{inact} [I] + K_I

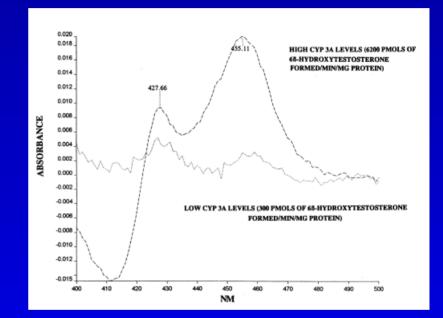
Lambda is the inactivation rate constant which can be compared to known irreversible inhibitors with clinically significant drug interactions.

Mayhew, Hall, Jones (2000) Drug Met. Disp. 28:1031

Functional Groups For Metabolism-Based P450 Inhibition

Mechanism-based inactivation


Terminal olefins (secobarbital) Acetylenes (ethinyl estradiol, RU486) Furans (bergamottins, furafylline) Thiophene (tienilic acid) Cyclic amines and N-N functions (phencyclidine)


Quasi-irreversible inhibition

Aryl or alkyl methylenedioxy compoundsAlkyl or aromatic amines (*TAO, erythromycin*)1,1-Disubstituted and acyl hydrazines (isoniazid)

Metabolite - Intermediate (MI) Complex

Quasi-Irreversible Inhibition

Methylene Dioxyphenyl Derivatives

Characteristic UV max @ 455 nm