Nanoscale Design of Biosensors for Toxicity Screening and Biomedical Applications

James F. Rusling Departments of Chemistry & Pharmacology *University of Connecticut* Storrs, CT, USA

Traditional Electrochemical Biosensors

- nanoscale biosensing architecture
- patternable nanomaterials for arrays

~ 30 % of drug candidates defeated by toxicity
Early screening could save drug development costs

Collaboration with Prof. John Schenkman, Pharmacology, Uconn Health Center Funding from NIH, NIEHS

Films for Toxicity Screening

QCM Resonator

- Mass: $M/A = -\Delta F/1.86 \times 10^8$
- Thickness: $d = -(0.016) \Delta F$

Equipment for toxicity biosensors

Screening Chemical Toxicity

Enzyme reaction - Incubate: Reactant + H₂O₂-->metabolite

Analysis by catalytic SWV or electrochemiluminescence

$$RuL^{2+} = RuL^{3+} + e-$$

RuL³⁺ + DNA-G --> RuL²⁺ + DNA-G•

Cyt P450cam/DNA film + 0.2 M H₂O₂

Detection of DNA-styrene oxide adducts after incubations of films + hydrolysis

Comparison of toxicity sensors with LC-MS For DNA damage by methylmethane sulfonate

Lynn Dennany, Robert J. Forster and James F. Rusling,
"Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films" *J. Am. Chem. Soc.* 2003, *125*, 5213-5218.
Collaboration with NCSR, Dublin City Univ.

Equipment for ECL toxicity sensors

Incubations with styrene oxide

Incubation of Ru-PVP/DNA films with styrene oxide

Direct ECL generation from DNA

 $RVP-RuL^{2+} = PVP-RuL^{3+} + e PVP-RuL^{3+} + DNA-G --> PVP-RuL^{2+} + DNA-G \cdot$

Then? PVP-RuL³⁺ oxidizes DNA-G• to give Photoexcited PVP-[RuL²⁺]* Or DNA-G• reduces PVP-RuL²⁺ to PVP-RuL⁺, PVP-RuL³⁺ + PVP-RuL⁺ --> PVP-[RuL²⁺]*

Arrays: Which Liver Cytochrome P450s generate toxic <u>Benzo[a]pyrene</u> Metabolites?

Electrode array

Arrays detect in-vitro DNA damage from metabolites of different enzymes in DNA/enzyme films

Figure 7. Influence of incubation time with 50 μ M benzo[a]pyrene and 1 mM H₂O₂ on the peak current ratios from SWV of PDDA/DNA/(enzyme/DNA)₂ films Control is PDDA/DNA/(Mb/DNA)₂ film in 50 μ M benzo[a]pyrene alone.

Sensors for oxidative stress via oxidized DNA

AmosMugery, Bingquar Angendlanes F. Ruking Votametric Dection 60 idized DNA sing Utrahin Films of Q and Ru Metal ophymers', Anal Chem 200, 4555-5563.

Summary: DNA damage detection/toxicity sensors

- Catalytic voltammetry and ECL toxicity sensors
- sensors produce metabolites, damage DNA
- Can detect 5-10 damaged bases/10,000
- can detect DNA oxidation 8-oxoguanine (1/6000)
- Future: extensions to many compounds, cyt P450 arrays, ECL arrays, drug toxicity

Single-walled carbon nanotube forests as a basis for immunosensors

James F. Rusling and Xin Yu, Depts. of Chemistry and Pharmacology, Univ. Connecticut

Maire O'Connor, Anthony Killard, Malcolm Smyth NCSR, Dublin City University

Sang Nyon Kim, Fotis Papadimitrakopoulos Institute of Materials Science, University of Connecticut

Carbon Nanotubes

- Single walled (1.4 nm o.d.) and multi-walled
- Highly conductive, flexible, strong, patternable
- Commercially Available

Single-Walled Carbon Nanotube Forests: Antigen-Antibody Sensing

~1.4 nm diameter, high conductivity

Chattopadhyay, Galeska, <u>Papadimitrakopoulos</u>, J. Am. Chem. Soc. 2001, 123, 9451. End COOH groups allow chemical attachment to proteins (antibodies) High conductivity to conduct signal (e's) from enzyme label to meas. circuit

Experimental Procedure for SWNT Forest Assembly

Chattopadhyay, Galeska, Papadimitrakopoulos, J. Am. Chem. Soc. 2001, 123, 9451.

Covalently Binding Protein to SWNT

AFM of SWNT forest with and without antibiotin attached

(a) SWNT forest on smooth silicon and (b) Anti-biotin antibody functionalized SWNT on smooth silicon

Electrochemical Response of Peroxidases

Possible reduced species in red

HRP on electrodes: $+ H_2O_2 = current signal$

Zhe Zhang, Salem Chouchane, Richard S. Magliozzo, and James F. Rusling, "Direct Voltammetry and Enzyme Catalysis with *M. tuberculosis* Catalase-Peroxidase, Peroxidases and Catalase in Lipid Films", *Anal. Chem.*, **2002**, *74*, 163-170.

Competitive Immunoassay

Catalytic current should be inversely proportional to the amount of non-labeled Ag, depending on binding constant, Ag was pre-bound on Ab

Anti-biotin/biotin-HRP test system (H₂O, present)

not all the HRP label was communicating with the measuring circuit - soluble mediator shuttles electrons from HRP label more efficiently

Sandwich Assay for Human Serum Albumin

Detection of Human Serum albumin in 10 µL drops on SWNT forest immunosensor

Design approaches to future arrays

- 1. Layer-by-layer approach general, simple
- 2. Stable films, complex architecture, any surface
- 3. Sensors for toxicity, oxidative stress
- 4. Ambient T solution processable
- 5. <u>SWNT forests</u> patterned by solution process
- 6. Excellent LOD and sensitivity using conductive polymer bed (SPAN)
- 7. Possibility of automated array formation
- 8. Applications to proteins, pathogens, etc.

Future work: pattern SWNT forest arrays onto microchij collaboration withUniv. of Edinburgh Genomics Inst. (GT

Also, screen printed carbon arrays, Lab 901, Edinbugh

Detection of Protein biomarkers for Cancer: • NIH, NIDCR

• prostate, squamous cell, and breast cancers

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Thanks to NIH, NSF and ARO for funding!

Thanks to all our coworkers and collaborators http://web.uconn.edu/rusling/

Thanks to YOU for listening!

Thanks to intangible creative factors

