Thin film Protein Voltammetry

James F. Rusling, Zhe Zhang, "Designing functional biomolecular films on electrodes" in J. F. Rusling, Ed., *Biomolecular Films*, Marcel Dekker, N. Y., **2003**, pp. 1-64.

Film preparation

Layer-by-layer methods: versatile

Rusling and Lvov: peroxidases; cyt P450s, myglobin

Figure1

Catalytic reduction of H₂O₂ by peroxidase films Catalytic cycles increase current

Other protein film methods:

Single bilayer on a surface

Hawkridge, Burgess... Cyt c oxidase

SAM - self assembled monolayer

Example: R = COO-; protein = cyt c (+17)

Bowden, Niki - confirmed Marcus theory

Dihexadecylphosphatidyl choline

Lipid films: Rusling, et al. Myoglobin, peroxidases, plant reaction center proteins - light harvesting Cyclic voltammogram (CV) at 100 mV s⁻¹ and 25 °C of *Mycobacterium Tuberculosis* KatG catalase-peroxidase in a thin film of dimyristoylphosphatidylcholine on basal plane PG electrode, in anaerobic pH 6.0 buffer.

Transfer

Lipid films with polyions as counterions: DDA+ and PSS

Hu, et al (Beijing)

Cast films of polyions and proteins; typically Not very stable - leak!

Electrical "wiring" using covalent links Willner and Katz

Figure 12

Enzyme Kinetics: RDV and the Electrochemical Michaelis Eqn.

Under steady-state conditions, the RDV limiting current is given by:

$$\frac{1}{I_{Lim}} = \frac{1}{I_{Lev}} + \frac{1}{I_E} + \frac{1}{I_{cat}}$$
(1)

where I_{Lim} is the limiting current, I_E is the exchange current due to interfacial electron transfer between the electrode and primary electron entry/exit site on the enzyme. I_{cat} is the catalytic current characteristic of the enzyme reaction, and I_{Lev} is the Levich current for the transport of substrate between the bulk solution and the enzyme film. Assuming that electron transfer is not limiting at high overpotential, equation 1 becomes

$$\frac{1}{I_{Lim}} = \frac{1}{I_{Lev}} + \frac{1}{I_{cat}}$$
(2)

where I_{Lev} is the Levich current given by

$$I_{Lev} = 0.62 n FAD^{2/3} C v^{-1/6} \omega^{1/2}$$

So, a graph of $1/I_{lim}$ vs. $\omega^{-1/2}$ gives $1/I_{cat}$ as intercept

Michaelis-Menten Model

Scheme 1

give the protein-substrate complex ($E_{red}S$), which reacts to regenerate Mb (E_{ox}) in an oxidized form. If the electrochemistry of E_{ox} in the film is reversible and regenerates E_{red} , a catalytic current that can be used to measure reaction kinetics results from the electrochemical reduction of E_{ox} in the film. The catalytic current I_{cat} is given by the electrochemical Michaels-Menten equation^{Error!} Bookmark not defined. Error! Bookmark not defined.

$$I_{cat} = \frac{nFA\Gamma k_{cat}C_s}{C_s + K_m}$$
(3)

where *n* is the number of electrons in the electrochemical reaction, C_s is concentration of substrate in solution, Γ is the surface concentration of enzyme in the film (mol cm⁻²), A is the electrode area (cm²), *F* is Faraday's constant, k_{cat} is the catalytic rate constant (s⁻¹) and K_m is the Michaelis dissociation constant given by:

$$K_m = \frac{k_{-1} + k_{cat}}{k_1} = \frac{[E_{red}][S]}{[E_{red}S]}$$
(4)

The ratio k_{cat}/K_m has units of a second order rate constant ($M^{-1} s^{-1}$) and provides a direct measure of catalytic efficiency.

Reaction of MbFe^{III} with ferredoxin (Fd)

Extrapolation to get I_{cat}

Fit I_{cat} vs. [Fd] to obtain K_M and k_{cat}

 k_{cat}/K_M with units of a second order rate constant was 9.1 x 10⁴ M⁻¹ s⁻¹.

Khrisna E. Alcantara and James F. Rusling, Voltammetric Measurement of Michaelis-Menten Kinetics for a Protein in a Lipid Film Reacting with a Protein in Solution, Electrochem. Communications, 2005, 7, 223-226.

Enzyme thin film voltammetry

- Many approaches available to make films
- avoids electrode fouling, slow diffusion
- often reversible voltammetry for cofactors
- method of choice for modern electrochemical studies of enzymes and redox proteins
- stable films for biosensors